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Abstract

We are concerned, in a static regime, with an imaging approach of the locations in

a three-dimensional bounded domain of certain electromagnetic imperfections. This ap-

proach is related to Electrical Impedance Tomography and makes use of a new perturbation

formula in the electric fields. We present two localization procedures, from a Current Pro-

jection method that deals with the single imperfection context and an inverse Fourier

process that is devoted to multiple imperfections configurations. These procedures ex-

tend those that were described in our previous work, since operating for a broader class

of settings. Namely, the localization is additionally performed for certain purely electric

imperfections, as established from numerical simulations.
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1. Introduction

In the context of certain applications, the imaging process mainly consists of determining

from boundary measurements the locations of a finite number of defects contained in a bounded

domain, and a full reconstruction of each of these defects is not necessary. Diverse reasons can

motivate this determination of locations only: a priori knowledge of shapes of the defects,

effective reconstruction time cost, smallness of the defects, ... Several recent works have been

devoted to such a determination when the common order of magnitude of the diameters of

these defects is small. The approach in these works (see e.g. [1-5,12,18]), related to Electrical

Impedance Tomography, consists of localizing the defects from a particular combination of

an asymptotic formula for perturbations in the potential or field, in the presence of defects,

with an inversion process. Such a formula makes use of polarization tensors [3], associated

with defects, and the consideration of direct inversion processes is well suited. This approach

has been developed in various situations: small conductivity inhomogeneities, small elastic

inhomogeneities, ...

In the presence of three-dimensional settings of small electromagnetic inhomogeneities and in

the frequency regime, H. Ammari, M. Vogelius and D. Volkov [6] have proposed the asymptotic

formula for perturbations in the electromagnetic fields. This tool has been thus considered by
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M. Asch and S.M. Mefire [8,9] for performing the numerical localization in a three-dimensional

bounded domain of these inhomogeneities, in diverse experimental configurations. Of course, in

the static regime, and in contrast to the frequency regime, the localization is no longer subject

to a suitable choice of frequency or of a range of frequencies. However, the inhomogeneities

that are characterized by a complex electric permittivity are not considered in the localization

from the static regime. In [14, 15], we deal with the static regime in several experimental

configurations. The two localization procedures introduced in these works are based on a

limit model in electric field and a limit perturbation model, in combination with the Current

Projection method (for the single inhomogeneity context) or with an inverse Fourier method (for

the multiple inhomogeneities context). These limit models are respectively obtained by letting

the frequency vanish in the time-harmonic Maxwell equations and in the asymptotic formula

for perturbations in the electromagnetic fields proposed in [6]. It results from [14,15] that these

procedures achieve uniquely the numerical localization of inhomogeneities involving a magnetic

contrast; purely electric inhomogeneities, namely inhomogeneities of real electric permittivity

and without magnetic characteristics, cannot thus be localized from these procedures. This

observation leads us to an essential question, that of knowing whether, from this limit model in

electric field, both purely magnetic and purely electric inhomogeneities can be localized? The

numerical treatment of this question constitutes here the main objective.

Unlike in [14,15], we will deal here with an asymptotic formula for perturbations that derives

directly from the limit model in electric field.

This work is subdivided into six sections. In Section 2, after recalling the limit model in

electric field following [14], we introduce an asymptotic formula that allows to study pertur-

bations in the electric fields due to the presence of small electromagnetic inhomogeneities in a

three-dimensional bounded domain Ω. This asymptotic formula contains information on the

electric contrast as well as on the magnetic contrast relatively to Ω, and constitutes a basis

for some approximate inversion techniques. Since boundary measurements, initiated by electric

currents applied on the boundary of Ω, shall be generated in numerical simulations and from

this asymptotic formula, we briefly recall in Section 3, following [14], the (direct) computation

of the electric field then required in the evaluation of each measurement. This computation

is achieved by a least squares approach, with the help of Nédélec’s edge elements and nodal

finite elements. In Section 4, we present two localization procedures resulting from the combi-

nation of the asymptotic formula with each of the following inversion processes: the Current

Projection method and an inverse Fourier method. Each procedure uses boundary measure-

ments (in a finite number) as data and is employed in the single inhomogeneity context. Only

the procedure considering an inverse Fourier method is required for multiple inhomogeneities

configurations. As a result, these localization procedures extend those that were introduced

in [14], since dealing with the case of purely magnetic inhomogeneities in an identical way and

furthermore numerically suitable for the context of purely electric inhomogeneities. We describe

in Section 5 localization results obtained from various settings and compare some results in the

single inhomogeneity context. Finally, some conclusions are reported in Section 6.

2. Perturbation Formula in the Electric Fields

We start by considering some notation, before introducing the perturbation formula in the

electric fields.
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2.1. Preliminaries

We are here concerned with the model also presented in [14]. Let us consider a bounded open

subset Ω of IR3, that is convex. For simplicity we assume ∂Ω, the boundary of Ω, connected, to

be C∞, but this regularity condition could be considerably weakened. Here, Ω contains a finite

number m of inhomogeneities, each one of the form zj + αBj , where Bj ⊂ IR3 is a bounded,

smooth (C∞) domain containing the origin. The points zj ∈ Ω, 1 ≤ j ≤ m, that determine the

locations of the inhomogeneities are assumed to satisfy:





0 < d0 ≤ |zj − zk| ∀ j 6= k,

d0 ≤ dist(zj , ∂Ω) ∀ j .
(2.1)

The parameter α > 0, the common order of magnitude of the diameters of the inhomogeneities,

is sufficiently small in such a way that these inhomogeneities are disjoint and their distance to

IR3 \Ω is larger than d0/2. As in [8], we call hereafter, an imperfection, each one of these small

inhomogeneities. The total collection of imperfections takes the form Iα =
⋃m

j=1(zj + αBj).

Let us denote by µ0 > 0 and ε0 the magnetic permeability and the electric permittivity of

the background medium. Let also µj > 0 and εj denote the permeability and the permittivity

of the j-th imperfection zj + αBj . We assume here that the conductivity vanishes everywhere

in Ω. The permittivities ε0 and εj are therefore real-valued and considered such that: ε0 > 0,

εj > 0. By assuming that all these parameters are constant, we represent as below the piecewise

constant magnetic permeability and the piecewise constant electric permittivity: ∀ x ∈ Ω,

µα(x) =





µ0 if x ∈ Ω \ Iα ,

µj if x ∈ zj + αBj ,
εα(x) =





ε0 if x ∈ Ω \ Iα ,

εj if x ∈ zj + αBj ,

with 1 ≤ j ≤ m. If we allow the degenerate case α = 0, then the function µα equals the

constant µ0 and the function εα equals the constant ε0.

Let {γn}0≤n≤m, with γn > 0, for 0 ≤ n ≤ m, be related to either the set {µn}0≤n≤m or the

set {εn}0≤n≤m. For any fixed 1 ≤ j0 ≤ m, let γ denote the function defined as: ∀ x ∈ IR3,

γ(x) =





γ0 if x ∈ IR3 \Bj0 ,

γj0 if x ∈ Bj0 .

Let us represent by xl, 1 ≤ l ≤ 3, the coordinates of x ∈ IR3. For any fixed 1 ≤ l ≤ 3, denote

by φl the solution to:





div (γ(x) gradφl(x)) = 0 for x ∈ IR3 ,

φl(x) − xl −→ 0 as |x| → ∞ .

The scalar potential φl depends in fact only on γ0 and γj0 through the ratio c = γ0/γj0 . Here,

the essential assumption is that the constant c cannot be zero or a negative real number. With

this aspect ratio, we define (as in [6]) the polarization tensor,M j0(c), of the inhomogeneity Bj0

as follows: ∀ 1 ≤ i, l ≤ 3,

M j0
il (c) = c−1

∫

Bj0

∂φl
∂xi

dx . (2.2)
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Following [6] for instance, the tensor M j0(c) is symmetric, and is furthermore positive definite

if c ∈ IR⋆
+.

As in [14], we are here concerned with the following limit model. In the presence of imper-

fections, the electric field denoted Eα satisfies:





curl( 1
µα

curlEα) = 0 in Ω ,

div (εα Eα) = 0 in Ω ,

Eα × ν = g on ∂Ω ,

(2.3)

where g is a prescribed datum on ∂Ω, and ν represents the outward unit normal to Ω, defined

on ∂Ω.

The electric field denoted E0, in the absence of all the imperfections, is such that:




curl( 1
µ0

curlE0) = 0 in Ω ,

div (ε0 E0) = 0 in Ω ,

E0 × ν = g on ∂Ω .

(2.4)

Let

H(curl ; Ω) =

{
u ∈

(
L2(Ω)

)3
; curlu ∈

(
L2(Ω)

)3}

be endowed with its usual Hermitian product denoted here by ( . , . )H(curl ; Ω); the correspond-

ing norm is denoted by ‖ . ‖H(curl ; Ω). The vector fields Eα and E0 shall be determined in

H(curl; Ω). By representing the surface divergence by div∂Ω, let us consider the space

TH− 1

2 (div ; ∂Ω) = {q ∈
(
H− 1

2 (∂Ω)
)3

; div∂Ω q ∈ H− 1

2 (∂Ω), q · ν = 0 on ∂Ω},

with its usual norm denoted here by ‖ . ‖
TH

−

1

2 (div ; ∂Ω)
.

Of course, the datum g is taken in TH− 1

2 (div ; ∂Ω), and we consider ug ∈ H(curl; Ω) such

that (see e.g. [7]): 



ug × ν = g on ∂Ω ,

‖ug‖H(curl; Ω) ≤ CΩ‖g‖
TH

−

1

2 (div ; ∂Ω)
,

(2.5)

where CΩ > 0 is a constant depending only on Ω. With this extension field, the determination

of Eα satisfying (2.3) is reduced to the problem which consists of finding Eα such that:




curl( 1
µα

curl Eα) = − curl( 1
µα

curlug) in Ω ,

div (εα Eα + εα ug) = 0 in Ω ,

Eα × ν = 0 on ∂Ω .

(2.6)

Of course, knowing ug, while Eα is in accordance with (2.6), we determine the electric field:

Eα := Eα + ug . (2.7)

Let us set:

Ψ = H1
0 (Ω) ,

H = {u ∈ H(curl; Ω) ; u× ν = 0 on ∂Ω } .
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The vector field Eα is sought in the space H. Let us consider q ∈ Ψ such that

(εα grad q, gradψ)(L2(Ω))3 = (εα ug, gradψ)(L2(Ω))3 ∀ ψ ∈ Ψ , (2.8)

and introduce the new unknown

Uα := Eα + grad q , (2.9)

as well as the space

V =
{
v ∈ H(curl; Ω) ; (εα v, gradψ)(L2(Ω))3 = 0 ∀ ψ ∈ Ψ , v × ν = 0 on ∂Ω

}
.

Here, the notation ( . , . )(L2(Ω))3 denotes the usual Hermitian product of (L2(Ω))3 and the as-

sociated norm will be represented by ‖ . ‖(L2(Ω))3 . The space V is endowed with the norm equiv-

alent to ‖ . ‖H(curl ; Ω) and generated (see e.g. [7]) by the mapping u ∈ V 7−→ ‖ curlu‖(L2(Ω))3

according to hypotheses on Ω and to the definition of the real-valued parameter εα. Follow-

ing [14], we introduce the weak formulation defined below for g ∈ TH−1

2 (div ; ∂Ω) and therefore

for ug taken as in (2.5).

Find Uα ∈ V such that:

(
1

µα

curlUα, curl v)(L2(Ω))3 = −(
1

µα

curlug, curl v)(L2(Ω))3 ∀ v ∈ V . (2.10)

The following statement, regarding (2.10) and established in [14], leads to the determination

of a unique vector field Eα in accordance with (2.6), due to the definition of the scalar potential

q in (2.9). It ensures then the existence and the uniqueness of Eα subject to (2.3), by taking

into account (2.7).

Theorem 2.1. For any g ∈ TH− 1

2 (div ; ∂Ω), and therefore any ug defined as in (2.5), the

formulation (2.10) has one and only one solution Uα ∈ V. Furthermore, there exists a constant

C > 0 independent of α such that: ‖Uα‖H(curl ; Ω) ≤ C ‖g‖
TH

−

1

2 (div ; ∂Ω)
.

Let us now derive a perturbation formula due to the presence of the imperfections in the

domain Ω, and directly based on (2.3)-(2.4).

2.2. Perturbation formula

In contrast with [14], we are here interested in a study of perturbations resulting directly

from the limit model in electric field. Let us first notice the following preliminary remark.

Remark 2.1. The vector fields Eα and E0, subject to (2.3) and (2.4) respectively, are in

particular such that:

curl(
1

µα

curlEα)− grad
(
div (εαEα)

)
= 0, in Ω , (2.11)

curl(
1

µ0
curlE0)− grad

(
div (ε0E0)

)
= 0, in Ω . (2.12)

A description of the boundary perturbation in the electric field due to the presence of imper-

fections is summarized as below.
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Proposition 2.1. Let (2.1) be satisfied and g ∈ TH− 1

2 (div ; ∂Ω). Let us denote by w any

smooth vector-valued function such that:

curl(
1

µ0
curlw) − grad(div (ε0 w)) = 0 in W , (2.13)

where W is an open neighborhood of Ω. Let us consider the vector field Eα, where 0 < α < α0,

with the constant α0 depending on {Bj}1≤j≤m, Ω, {µj}0≤j≤m, {εj}0≤j≤m and d0, but otherwise

independent of g, w, and of the points zj, 1 ≤ j ≤ m. The vector field Eα satisfies:
∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × (Eα × ν)) dσ − µ0

∫

∂Ω

(ε0Eα) · ν div (w) dσ

=

∫

Iα

(
µ0

µα

− 1) curlEα · curlw dx − µ0

∫

Iα

(εα − ε0)Eα · grad(div (w)) dx . (2.14)

Proof. From (2.11), it follows that
∫

Ω

1

µα

curlEα · curlw dx−

∫

∂Ω

1

µα

curlEα × ν · w dσ +

∫

Ω

div (εαEα) div (w) dx = 0 ,

since
∫
∂Ω

div (εαEα)w · ν dσ = 0. Then,
∫

Ω

1

µ0
curlEα · curlw dx +

∫

Iα

(
1

µα

−
1

µ0
) curlEα · curlw dx

−

∫

∂Ω

1

µα

curlEα × ν · w dσ +

∫

Ω

div (εαEα) div (w) dx = 0 ,

i.e.,
∫

Ω

Eα · curl

(
1

µ0
curlw

)
dx+

∫

Iα

(
1

µα

−
1

µ0

)
curlEα · curlw dx+

∫

Ω

div (εαEα) div (w) dx

−

∫

∂Ω

1

µ0
Eα × ν · curlw dσ −

∫

∂Ω

1

µ0
curlEα × ν · w dσ = 0 .

Thus,
∫

Ω

Eα · curl

(
1

µ0
curlw

)
dx +

∫

Iα

(
1

µα

−
1

µ0

)
curlEα · curlw dx−

∫

Ω

Eα · grad(div (ε0w)) dx

−

∫

Iα

(εα − ε0)Eα · grad(divw) dx −

∫

∂Ω

1

µ0
Eα × ν · curlw dσ

−

∫

∂Ω

1

µ0
curlEα × ν · w dσ +

∫

∂Ω

(ε0Eα) · ν divw dσ = 0 .

By making now use of (2.13), it follows finally that

−

∫

∂Ω

1

µ0
Eα × ν · curlw dσ −

∫

∂Ω

1

µ0
curlEα × ν · w dσ +

∫

∂Ω

(ε0Eα) · ν divw dσ

+

∫

Iα

(
1

µα

−
1

µ0

)
curlEα · curlw dx−

∫

Iα

(εα − ε0)Eα · grad(divw) dx = 0 ,

and we obtain the relation
∫

∂Ω

curlw × ν ·Eα dσ −

∫

∂Ω

curlEα × ν · w dσ + µ0

∫

∂Ω

(ε0Eα) · ν divw dσ

+

∫

Iα

(
µ0

µα

− 1

)
curlEα · curlw dx− µ0

∫

Iα

(εα − ε0)Eα · grad(divw) dx = 0 ,
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which leads then to (2.14). �

The description summarized in Proposition 2.1 allows us to introduce the following pertur-

bation formula.

Proposition 2.2. Let (2.1) be satisfied and g ∈ TH− 1

2 (div ; ∂Ω). Let us denote by w any

smooth vector-valued function satisfying (2.13). Let us consider the vector field Eα, where

0 < α < α0, with the constant α0 depending on {Bj}1≤j≤m, Ω, {µj}0≤j≤m, {εj}0≤j≤m and d0,

but otherwise independent of g, w, and of the points zj, 1 ≤ j ≤ m. The vector fields Eα and

E0 satisfy:

∫

∂Ω

1

µ0
curlEα × ν · w dσ −

∫

∂Ω

1

µ0
curlw × ν · (ν × (Eα × ν)) dσ −

∫

∂Ω

(ε0Eα) · ν div (w) dσ

= α3
m∑

j=1

(
1

µj

−
1

µ0
)

[
M j(

µ0

µj

) curlE0(zj)

]
· curlw(zj)

+ α3
m∑

j=1

ε0(
ε0
εj

− 1)

[
M j(

ε0
εj

)E0(zj)

]
· grad(div (w))(zj) + o(α3) . (2.15)

Before concluding this section with some remarks on (2.15), let us present the main lines

of the proof of Proposition 2.2 at first. In fact, the formula (2.15) is obtained from (2.14) and

by making use of an asymptotic matching technique of expansions of Eα similar to the one

developed in [4] in the context of the time-harmonic electromagnetic fields. Let us consider

(2.14), where Eα is subject to (2.3), whereas the smooth vector-valued function w satisfies

(2.13). Also, the vector field E0 is subject to (2.4). Replacing curlw and grad(div (w)) by

curlw(zj) and grad(div (w))(zj) in zj + αBj , with 1 ≤ j ≤ m fixed, we formally obtain from

(2.14),

∫

∂Ω

1

µ0
curlEα × ν · w dσ −

∫

∂Ω

1

µ0
curlw × ν · (ν × (Eα × ν)) dσ −

∫

∂Ω

(ε0Eα) · ν div (w) dσ

=

m∑

j=1

(
1

µj

−
1

µ0
)

(∫

zj+αBj

curlEα dx

)
· curlw(zj)

−

m∑

j=1

(εj − ε0)

(∫

zj+αBj

Eα dx

)
· grad(div (w))(zj) + o(α3) . (2.16)

Let us consider now, for 1 ≤ j ≤ m fixed, expressions of the fields Eα and curlEα, inside

zj + αBj based on a matching asymptotic expansions technique. Let us denote by y =
x− zj
α

the local variable. For the field Eα(x), we expect that it will differ appreciably from E0(x) for

x near zj , but that it will differ little from E0(x) for x far from zj . This field is here represented

by two different expansions, namely an inner expansion for x near zj and an outer expansion

for x far from zj. The outer expansion is expressed as,

Eα(x) = E0(x) + ατ1E1(x) + ατ2E2(x) + · · · , for |x− zj | ≫ O(α) ,

where 0 < τ1 < τ2 < · · ·, and E1, E2, ..., are to be found. The inner expansion is written as

Eα(zj + αy) = eα(y) = e0(y) + αe1(y) + α2e2(y) + · · · , for |y| = O(1) ,
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where e0, e1, ..., are to be found. The two expansions must be asymptotically equal in some

“overlap” domain within which the stretched variable y is large and x − zj is small. The

matching constraint in this domain is

E0(x) + ατ1E1(x) + ατ2E2(x) + · · · ∼ e0(y) + αe1(y) + α2e2(y) + · · ·

The first matching condition, obtained from the terms of order α0, indicates that

e0(y) −→ E0(zj) as |y| −→ +∞ .

By substituting the inner expansion into the two first relations of (2.3) and formally equating

coefficients of α−2 and α−1, it follows respectively that

curly (
1

µ(y)
curly e0(y)) = 0 ∀ y ∈ IR3 , divy (ε(y)e0(y)) = 0 ∀ y ∈ IR3 ,

where

µ(y) =





µ0 if y ∈ IR3 \Bj ,

µj if y ∈ Bj ,
ε(y) =





ε0 if y ∈ IR3 \Bj ,

εj if y ∈ Bj .

The field e0 is then subject to





curly

(
1

µ(y)
curly e0(y)

)
= 0, ∀ y ∈ IR3 ,

divy

(
ε(y)e0(y)

)
= 0, ∀ y ∈ IR3 ,

e0(y) −→ E0(zj), as |y| → +∞.

(2.17)

Let us represent by y1, y2 and y3 the coordinates of y ∈ IR3. With the notation used in [4], let

us consider now the scalar potential v
1

ε

1i (see Page 765 of [4]) such that





divy

(
ε(y) grady v

1

ε

1i(y)
)

= 0, ∀ y ∈ IR3 ,

v
1

ε

1i(y) −→ yi, as |y| → +∞.
(2.18)

By denoting by {ui}1≤i≤3 the canonical basis of IR3, the asymptotic behavior of grady v
1

ε

1i is

such that, grady v
1

ε

1i(y) = ui +
c

|y|3
y+ o( 1

|y|2
), where the constant c depends on ε0, εj , and Bj .

By considering, for y ∈ IR3,

e0(y) =

3∑

i=1

(E0(zj) · ui) grady v
1

ε

1i(y) , (2.19)

we determine in fact e0 subject to (2.17) since this field satisfies the relations curly e0 = 0,

divy (ε e0) = 0, and is such that e0(y) −→ E0(zj) as |y| → +∞.

In a similar way, by setting h̃α(x) = curlEα(x), for x ∈ Ω, it follows that the first order

term, h̃0, in the inner asymptotic expansion of this field is subject to




curly

(
1

µ(y)
h̃0(y)

)
= 0, ∀ y ∈ IR3 ,

divy

(
h̃0(y)

)
= 0, ∀ y ∈ IR3 ,

h̃0(y) −→ curlE0(zj), as |y| → +∞.
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Then the vector field s0, defined in IR3 as s0 := 1
µh̃0, is such that






curly

(
s0(y)

)
= 0, ∀ y ∈ IR3 ,

divy

(
µ(y)s0(y)

)
= 0, ∀ y ∈ IR3 ,

s0(y) −→ 1
µ0

curlE0(zj), as |y| → +∞.

With again the notation used in [4], it follows that, for y ∈ IR3,

1

µ(y)
h̃0(y) = s0(y) =

3∑

i=1

(
1

µ0
curlE0(zj) · ui

)
grady v

1

µ

1i(y) , (2.20)

where the scalar potential v
1

µ

1i satisfies





divy

(
µ(y) grady v

1

µ

1i(y)

)
= 0, ∀ y ∈ IR3 ,

v
1

µ

1i(y) −→ yi, as |y| → +∞.

(2.21)

By using the asymptotic expression of Eα in accordance with (2.19) and the one of curlEα

combined with (2.20), it results from (2.16) that

∫

∂Ω

1

µ0
curlEα × ν · w dσ −

∫

∂Ω

1

µ0
curlw × ν · (ν × (Eα × ν)) dσ −

∫

∂Ω

(ε0Eα) · ν div (w) dσ

=

m∑

j=1

(
1

µj

−
1

µ0
)α3

(∫

Bj

µ(y)

[
3∑

i=1

(
1

µ0
curlE0(zj) · ui) grady v

1

µ

1i(y)

]
dy

)
· curlw(zj) (2.22)

−

m∑

j=1

(εj − ε0)α
3

(∫

Bj

[
3∑

i=1

(E0(zj) · ui) grady v
1

ε

1i(y)

]
dy

)
· grad

(
div (w)

)
(zj) + o(α3) .

The notation in (2.2) allows us to mention that






∫

Bj

[
3∑

i=1

(E0(zj) · ui) grad v
1

ε

1i(y)

]
dy = ε0

εjM
j(ε0εj )E0(zj) ,

∫

Bj

µ(y)

[
3∑

i=1

( 1
µ0

curlE0(zj) · ui) grad v
1

µ

1i(y)

]
dy = M j(

µ0
µj

) curlE0(zj) .

By using in (2.22) these relations, it derives then (2.15).

Let us now make some remarks related to (2.15).

Remark 2.2. In the particular context where the field w subject to (2.13) is furthermore

divergence-free, we get from the perturbation formula (2.15), by neglecting the asymptotically

small remainder term, the approximation formula of boundary measurements that was pre-

sented in [14], in combination with the model (2.3)-(2.4). The numerical investigations of [14]

established that this approximation formula was particularly suitable for localizations of im-

perfections that are not purely electric.
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Remark 2.3. The formula (2.15) contains both the explicit information on the parameter µα

and the parameter εα, contrary to the approximation formula presented in [14]. We can thus ex-

pect here, not only localizations of imperfections that are purely magnetic or of electromagnetic

type with real-valued permittivity, as indicates Remark 2.2, but also the localization of imper-

fections that are purely electric. The context where the field w subject to (2.13) is furthermore

such that

grad
(
div (w)

)
6= 0 in W , (2.23)

will be hence considered.

Remark 2.4. The relations (2.18) and (2.21) indicate (2.15) as being a formula which reflects

a superposition of contrasts simultaneously induced by a conductivity problem in µ and a

conductivity problem in ε. The polarization tensors intervening in (2.15) are the same as in

the formula known from [5] in the frequency context for perturbations of the electromagnetic

fields.

By combining the perturbation formula (2.15) with particular inversion algorithms, we shall

present procedures (see Section 4) for effective localizations of imperfections.

3. Numerical Approximations

Let us assume for simplifying the presentation, here and in the following sections, that each

inhomogeneity present in Ω is a polyhedron, as is Ω. In simulations, we will make use of the

formula (2.15) and consider the numerical approximation of Eα performed as in [14]. Namely,

the conforming mesh of the domain Ω consists of a collection Tα made up of tetrahedra, obtained

from a usual process of triangulation, in such a way that each inhomogeneity is entirely covered

by a distinct subset of tetrahedra of Tα. This collection is also such that there exists a constant

c > 0 such that supK∈Tα

hK
̺K ≤ c, where hK denotes the diameter of the tetrahedron K

and ̺K is the diameter of the largest sphere included in K. The mesh size h of the domain,

h = supK∈Tα
hK , depends in particular on α in the sense that we need to have a (global) mesh

as fine as its part associated with the smallest inhomogeneity.

The discrete formulation associated with (2.10) is then introduced with in particular the

help of the edge elements (see Nédélec [16]) of the first order. Representing by K a tetrahedron

of Tα, let us consider

R1(K) =
{
u : K −→ IC3 ; ∃ a, b ∈ IC3, u(x) = a+ b× x, x = (x1, x2, x3)

T ∈ K
}
,

where the superscript “T ” denotes, here and in the next sections, the transpose. Let us set

Rh =
{
uh ∈ H(curl; Ω) ; uh|K ∈ R1(K) ∀K ∈ Tα

}
,

and associate with H the discrete space

Hh =
{
uh ∈ Rh ; uh × ν = 0 on ∂Ω

}
,

also endowed, as in the case of H, with ( . , . )H(curl; Ω). The expression of any element of Rh

in each tetrahedron K ∈ Tα can be written similarly as was done in [13] with IR3-valued fields,

for a practical implementation.
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Let us next associate with Ψ the discrete space

Ψh =
{
ψh ∈ H1(Ω) ; Re(ψh)|K , Im(ψh)|K ∈ P1(K) ∀K ∈ Tα , ψh = 0 on ∂Ω

}
,

where P1(K) is the space of polynomials of degree less than or equal to 1 defined in K. Finally,

we consider

Vh =
{
vh ∈ Rh ; (εα vh, gradψh)(L2(Ω))3 = 0 ∀ ψh ∈ Ψh , vh × ν = 0 on ∂Ω

}
,

the discrete space associated with V , and endowed with the norm of V . The discrete formulation

associated with (2.10) consists of finding Uh ∈ Vh such that:

(
1

µα

curlUh, curl vh)(L2(Ω))3 = −(
1

µα

curlug, curl vh)(L2(Ω))3 ∀ vh ∈ Vh .

As observed in [14], although well-posed according in particular to properties (see e.g. The-

orem 1. in [17]) of the used finite elements, to the assumptions on µα, εα, as well as on the

geometry of Ω, it appears more suitable for a practical implementation to rewrite this formula-

tion as follows.

Find Uh ∈ Hh such that:




( 1
µα

curlUh, curl vh)(L2(Ω))3 = −( 1
µα

curlug, curl vh)(L2(Ω))3 , ∀ vh ∈ Hh ,

(εα Uh, gradψh)(L2(Ω))3 = 0, ∀ ψh ∈ Ψh .
(3.1)

Since Uh represents an approximation of the vector field Uα satisfying (2.10), we introduce,

following (2.9), the vector field Eh as being the discrete field associated with Eα subject to

(2.6), Uh =: Eh + grad q. Next, by inserting this expression of Uh into (3.1), and taking

into account the definition of the scalar potential q from (2.8), we now deal with a discrete

formulation associated with (2.6) and well-posed following [14].

Find Eh ∈ Hh such that:




( 1
µα

curl Eh, curl vh)(L2(Ω))3 = −( 1
µα

curlug, curl vh)(L2(Ω))3 , ∀ vh ∈ Hh ,

(εα Eh, gradψh)(L2(Ω))3 = −(εα ug, gradψh)(L2(Ω))3 , ∀ ψh ∈ Ψh .
(3.2)

In numerical simulations, we will be concerned with the formulation (3.2) allowing us to ap-

proximate the electric field Eα, through (2.7), by considering the vector field

Eh
α := Eh + ug . (3.3)

In the numerical approximation of Eα and therefore in the computation of the discrete field Eh,

the scalar potential q does not intervene.

For the evaluation of the integral terms of the formulation (3.2), we use a numerical integra-

tion method of order 2. A rectangular linear system results from this formulation and we are

concerned in computations with the determination of a least squares solution obtained as in [14]

with the help of a preconditioning technique based on an Incomplete Modified Gram-Schmidt

(IMGS) factorization.

4. Localization Procedures

We describe here two localization procedures of imperfections, that result from the combi-

nation of the formula (2.15) with a Current Projection method or an Inverse Fourier method.
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4.1. Procedure based on a Current Projection method

In this part, we present a localization procedure which can be used only in the context

where the domain contains a single imperfection. Our aim in this context is to determine

the center of the imperfection. Let us denote by p = (p1, p2, p3)
T this center, by M the

“rescaled” polarization tensor (
µ0
µ1

− 1)M1(
µ0
µ1

), and by N the “rescaled” polarization tensor

(ε0ε1 − 1)M1(ε0ε1 ) of this imperfection. By neglecting the asymptotically small remainder term

in (2.15), it follows that:

Γ :=

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ −

∫

∂Ω

µ0(ε0Eα) · ν div (w) dσ

≈ α3 (M curlE0(p)) · curlw(p) + α3µ0ε0 (N E0(p)) · grad
(
div (w)

)
(p) , (4.1)

where g = Eα × ν, a datum also prescribed in (2.4), and w is any smooth vector field satisfying

(2.13).

Let us apply different currents for g that correspond to the following background vector

potentials:

E
(1)
0 (x1, x2, x3) =




0

0

x2


 , E

(2)
0 (x1, x2, x3) =




x3
0

0


 , E

(3)
0 (x1, x2, x3) =




0

x1
0


 .

For each current g(i) = E
(i)
0 × ν, 1 ≤ i ≤ 3, we use g := g(i) in (2.5) and compute through

(3.2)-(3.3) the corresponding discrete electric field denoted here by Eh
α,(i), in association with

Eα. Next, we consider the test vector fields

w(1)(x1, x2, x3) =




0

0

x2


 , w(2)(x1, x2, x3) =




x3
0

0


 ,

w(3)(x1, x2, x3) =




0

x1
0


 , w(4)(x1, x2, x3) =




x2x3
−x1x3

0


 ,

in order to evaluate from the left-hand side of (4.1) the terms Γ(j,i), 1 ≤ j ≤ 4,

Γ(j,i) :=

∫

∂Ω

curlEh
α,(i) × ν · w(j) dσ −

∫

∂Ω

curlw(j) × ν · (ν × g(i)) dσ

−

∫

∂Ω

µ0(ε0E
h
α,(i)) · ν div (w

(j)) dσ,

which take then the following form,

Γ(j,i) =

∫

∂Ω

curlEh
α,(i) × ν · w(j) dσ −

∫

∂Ω

curlw(j) × ν · (ν × g(i)) dσ ,

since each of these test vector fields is divergence-free. Each term Γ(j,i), 1 ≤ i ≤ 3, 1 ≤ j ≤ 4, is

called the measurement, and its evaluation is achieved with the aid of a numerical integration

method of order 2. From (4.1), it results that:

Γ(j,i) ≈ α3Mji , for 1 ≤ i, j ≤ 3, (4.2)
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after setting M = (Mpq)1≤p,q≤3. Once an approximation of the rescaled tensor α3M is thus

obtained, we consider from (4.1) the following “linear system”,




Γ(4,1) ≈ α3M11p1 + α3M21p2 − 2α3M31p3 ,

Γ(4,2) ≈ α3M12p1 + α3M22p2 − 2α3M32p3 ,

Γ(4,3) ≈ α3M13p1 + α3M23p2 − 2α3M33p3 ,

(4.3)

which allows us to determine in a unique way the unknown (p1, p2, p3)
T . This will always

be possible since the matrix of the “system” (4.3) is invertible as its determinant is equal to

−2det(α3M) and α3M is invertible; of course, the polarization tensor M1(µ0

µ1

) being positive

definite.

The operated choices for the boundary currents and the test vector fields, as well as the

resulting boundary measurements, are the same as those appearing in [14]. In conformity with

Remark 2.2, we are thus concerned above, as in [14], with the same treatment then devoted in

particular to the context where the single imperfection is purely magnetic.

Let us now consider the configuration where the single imperfection is purely electric. We

apply different currents for g that correspond to the following background vector potentials:

E
(1)
0 (x1, x2, x3) =




1

0

0


 , E

(2)
0 (x1, x2, x3) =




0

1

0


 , E

(3)
0 (x1, x2, x3) =




0

0

1


 ,

and use, following (2.13) and (2.23), the test vector fields

w(1)(x1, x2, x3) =




0

x1x2
0


 , w(2)(x1, x2, x3) =




0

0

x2x3


 ,

w(3)(x1, x2, x3) =




x1x3
0

0


 , w(4)(x1, x2, x3) =




x1x2x3
x1x2x3
x1x2x3


 .

Also for each current g(i) = E
(i)
0 × ν, 1 ≤ i ≤ 3, we take g := g(i) in (2.5) and compute from

(3.2)-(3.3) the corresponding discrete electric field Eh
α,(i), in association with Eα. Next, we

evaluate from the left-hand side of (4.1) the terms Γ(j,i), 1 ≤ j ≤ 4,

Γ(j,i) :=

∫

∂Ω

curlEh
α,(i) × ν · w(j) dσ −

∫

∂Ω

curlw(j) × ν · (ν × g(i)) dσ

−

∫

∂Ω

µ0(ε0E
h
α,(i)) · ν div (w

(j)) dσ,

with the aid of a numerical integration method of order 2. It derives from (4.1) that:

Γ(j,i) ≈ α3µ0ε0Nji , for 1 ≤ i, j ≤ 3, (4.4)

after setting N = (Npq)1≤p,q≤3. Once an approximation of the rescaled tensor α3µ0ε0N is thus

determined, we consider from (4.1) the following “linear system”,




Γ(4,1) ≈ α3µ0ε0N11(p2 + p3) + α3µ0ε0N21(p1 + p3) + α3µ0ε0N31(p1 + p2) ,

Γ(4,2) ≈ α3µ0ε0N12(p2 + p3) + α3µ0ε0N22(p1 + p3) + α3µ0ε0N32(p1 + p2) ,

Γ(4,3) ≈ α3µ0ε0N13(p2 + p3) + α3µ0ε0N23(p1 + p3) + α3µ0ε0N33(p1 + p2) ,

(4.5)
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written in a matrix form as



Γ(4,1)

Γ(4,2)

Γ(4,3)


 ≈




α3µ0ε0N11 α3µ0ε0N21 α3µ0ε0N31

α3µ0ε0N12 α3µ0ε0N22 α3µ0ε0N32

α3µ0ε0N13 α3µ0ε0N23 α3µ0ε0N33


A




p1

p2

p3


 ,

where A =




0 1 1
1 0 1
1 1 0


 . The determination in a unique way of the unknown (p1, p2, p3)

T

can then be achieved. The matrix of the “system” (4.5) is invertible as its determinant is equal

to 2det(α3µ0ε0N) and α3µ0ε0N is invertible; the polarization tensor M1( ε0
ε1
) being positive

definite.

Depending on the context where the imperfection is purely electric or not, we determine

both an approximation of the rescaled tensor α3µ0ε0N , or α3M , and an approximation of the

center of the imperfection, by considering therefore three background vector potentials and also

four test vector fields.

Let us notice that an approximation of the order of magnitude of the diameter of the

imperfection can be obtained, following (4.4) or (4.2), from one of the terms Γ(i,i), or Γ(i,i),

1 ≤ i ≤ 3, when in addition one of the diagonal coefficients of the tensor µ0ε0(
ε0
ε1

− 1)M1( ε0
ε1
),

or respectively (µ0

µ1

− 1)M1(µ0

µ1

), is known.

In the configuration where the single imperfection is electromagnetic (with real permittivity),

an approximation of its center can be determined from the measurements in (4.4)-(4.5) and an

approximation of the order of magnitude of its diameter (from (4.4)) can be obtained when one

of the diagonal coefficients of the tensor µ0ε0(
ε0
ε1

− 1)M1( ε0
ε1
) is in addition known. Of course,

as already established in [14], the measurements in (4.2)-(4.3) and the knowledge of one of the

diagonal coefficients of the tensor (µ0

µ1

− 1)M1(µ0

µ1

) lead also to the determination of similar

approximations. Let us already mention that the numerical investigations that will be reported

hereafter (see Subsection 5.2) deal uniquely with the context of measurements in (4.4)-(4.5)

when interested in the present procedure.

4.2. Procedure based on an Inverse Fourier method

We are concerned in this part with a procedure devoted to the localization of a finite

number m (m ≥ 1) of imperfections. This procedure makes use of the formula (2.15) and of the

technique of Calderón [11] that reduces a localization problem to the calculation of an inverse

Fourier transform.

Let us first reconsider the formula (2.15) as follows

Γ :=

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ −

∫

∂Ω

µ0(ε0Eα) · ν div (w) dσ

≈ α3
m∑

j=1

(
µ0

µj

− 1)

[
M j(

µ0

µj

) curlE0(zj)

]
· curlw(zj)

+ α3
m∑

j=1

µ0ε0(
ε0
εj

− 1)

[
M j(

ε0
εj

)E0(zj)

]
· grad

(
div (w)

)
(zj) , (4.6)

where g = Eα × ν.
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For an arbitrary η ∈ IR3, let us define β and ζ in IR3 such that:





‖β‖2 = 1, β · η = 0,

‖ζ‖2 = 1, ζ · η = ζ · β = 0 ,

with ‖ . ‖ denoting the usual norm associated with the Hermitian product on IC3. Let p = η+γβ,

where γ is a complex number such that γ = i‖η‖, i.e. p · p = 0. We also set q = η − γβ.

Let us consider the boundary current for which the corresponding background potential is

given by

E0(x) = eip·xζ ,

namely g(x) = (eip·xζ)× ν(x), and use also, in accordance with (2.13), the test vector field

w(x) = eiq·xζ .

It follows from (4.6) with these considerations that

Γ =

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ

≈ α3

m∑

j=1

(
µ0
µj

− 1)
[
M j(

µ0
µj

) curlE0(zj)
]
· curlw(zj) ,

since the test vector field is divergence-free. By viewing the measurement as a function of η,

we notice that:

Γ(η) ≈ α3
m∑

j=1

(
−(
µ0

µj

− 1)

[
M j(

µ0

µj

)
(
(η + γβ)× ζ

)]
·
(
(η − γβ)× ζ

))
ei2η·zj . (4.7)

If all the imperfections are balls — the tensorsM j(c) being accordingly of the form mj(c)I3,

with I3 the 3 × 3 identity matrix, mj(c) a scalar depending on c (cf. e.g. [8]), it follows then

that

Γ(η) ≈ α3
m∑

j=1

[
−(
µ0

µj

− 1)mj(
µ0

µj

)(2‖η‖2)

]
ei2η·zj . (4.8)

Since ‖η‖2 is a polynomial in the coordinates ηi, 1 ≤ i ≤ 3, of η, we notice therefore from the

right-hand side of (4.8) the Fourier transform of a linear combination of derivatives of order

less than or equal to 2 of delta functions centered at the points −2zj, 1 ≤ j ≤ m. Otherwise,

the inverse Fourier transform of Γ(η) is such that

Γ̌(x) ≈ α3
m∑

j=1

Lj(δ−2zj )(x) ,

where Lj is a second order differential operator with constant coefficients depending onmj(
µ0
µj

).

A numerical Fourier inversion of a sample of measurements should efficiently pin down the zj’s.

When some of the imperfections are not balls, the expression in the right-hand side of (4.7)

is the Fourier transform of an operator of a more complicated kind acting on delta functions

centered at the points −2zj, 1 ≤ j ≤ m.
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We are in fact led to certain developments of [14]; the operated choices for the boundary

current and the test vector field, as well as the resulting boundary measurement, being the same

as those appearing in [14] for this configuration of imperfections involving magnetic contrasts.

In view of the configuration of purely electric imperfections, we consider the boundary

current for which the corresponding background potential is given by

E0(x) = eip·xp ,

namely g(x) = (eip·xp)× ν(x), and use the test vector field

w(x) = eiq·xη ,

under the condition

µ0ε0 = 1 , (4.9)

since w must satisfy (2.13). With these considerations, where in particular curlE0 vanishes, it

follows from (4.6) that

Γ =

∫

∂Ω

curlEα × ν · w dσ −

∫

∂Ω

curlw × ν · (ν × g) dσ −

∫

∂Ω

µ0(ε0Eα) · ν div (w) dσ

≈ α3
m∑

j=1

µ0ε0(
ε0
εj

− 1)

[
M j(

ε0
εj

)E0(zj)

]
· grad(div (w))(zj) ,

and hence,

Γ ≈ α3
m∑

j=1

µ0ε0(
ε0
εj

− 1)

[
M j(

ε0
εj

)(eip·zjp)

]
· (−(q · η)eiq·zjq) .

Let us view the measurement as a function of η:

Γ(η) ≈ α3
m∑

j=1

(
µ0ε0(

ε0
εj

− 1)

[
M j(

ε0
εj

)(η + γβ)

]
·
(
− (η · η)(η − γβ)

))
ei2η·zj . (4.10)

If all the imperfections are balls, it follows that

Γ(η) ≈ α3
m∑

j=1

[
µ0ε0(

ε0
εj

− 1)mj(
ε0
εj

)(−2‖η‖4)

]
ei2η·zj , (4.11)

where mj(ε0εj ) is a scalar depending on ε0
εj . The expression in the right-hand side of (4.11) is

then the Fourier transform of a linear combination of derivatives of order less than or equal to

4 of delta functions centered at the points −2zj, 1 ≤ j ≤ m. Otherwise, the inverse Fourier

transform of Γ(η) is such that

Γ̌(x) ≈ α3
m∑

j=1

Lj(δ−2zj )(x) ,

where Lj is a fourth order differential operator with constant coefficients depending on mj(ε0εj ).

When some of the imperfections are not balls, the expression in the right-hand side of (4.10),

where appears the term of the type ‖η‖2Q(η)ei2η·zj with Q(η) a polynomial function in η of

degree less than or equal to 2, corresponds to the Fourier transform of an operator of a more

complicated kind acting on delta functions centered at the points −2zj, 1 ≤ j ≤ m.
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The inversion process, then suitable both for configurations of imperfections that are purely

electric or not, consists, from (4.10) or (4.7), of sampling Γ(η) at some discrete set of points and

then evaluating the discrete inverse Fourier transform of the corresponding sample. Namely, for

each point η (of such a set), we consider, depending on the context, g(x) = (ei(η+γβ)·xζ)×ν(x)

or g(x) = (ei(η+γβ)·x(η + γβ)) × ν(x) as the boundary current in (2.5) and compute through

(3.2)-(3.3) the corresponding discrete electric field, here denoted by Eh
α. We then evaluate

numerically, with the aid of an integration method of order 2, the measurement Γ(η), by using

of course w(x) = ei(η−γβ)·xζ or w(x) = ei(η−γβ)·xη as the test field in
∫
∂Ω

curlEα × ν ·w dσ −∫
∂Ω curlw× ν · (ν × g) dσ or respectively in

∫
∂Ω curlEα × ν ·w dσ−

∫
∂Ω curlw× ν · (ν × g) dσ−∫

∂Ω µ0(ε0Eα) · ν div (w) dσ, and by replacing Eα by Eh
α in this representation of the left-hand

side of (4.7) or of (4.10).

A possible way to choose a step size for sampling with respect to η in the numerical simula-

tions is the one introduced in [18]. It is then assumed that all the centers zj = (z1j , z
2
j , z

3
j )

T of the

imperfections (1 ≤ j ≤ m) lie in a domain [−K,K]3, where the bound K is known, and that we

are in possession of the sequence of data, measurements for η = (η1, η2, η3)
T ∈ [−ηmax, ηmax]

3,

on a regular grid made up of n3 points with ρ = 2ηmax/n as the step size. In this process,

centers zj , 1 ≤ j ≤ m, are localized, after a rescaling (by − 1
2 ), from the sequence of the modules

of the terms that derive from the application of the discrete inverse Fourier transform to the

sequence of data. This is achieved with at best (theoretically) a resolution of order π/(2ηmax),

and the link between ηmax, K and n is such that ρ ≈ 1/K (see also [8]).

The present procedure aims then at localizing imperfections that are purely electric, under

the background constraint (4.9). In view of the localization of imperfections that are purely

magnetic, the procedure operates in exactly the same way as from [14] by making then use

of the measurements in (4.7). It is also devoted to the configuration of imperfections that are

electromagnetic (with real permittivity) from the measurements in (4.10) and in accordance

with (4.9); of course, as already established in [14], the localization of such imperfections can

also be achieved from the measurements in (4.7) without such a background constraint. Let us

already mention that the numerical investigations that will be reported hereafter (see Subsection

5.3) deal uniquely with the context of measurements in (4.10), when concerned with the present

procedure.

Remark 4.1. The constraint (4.9) is not in fact restrictive since it remains possible to formu-

late the localization problem with the following normalized parameters,

µ⋆
α =

µα

µ0
=





µ⋆
0 in Ω \ Iα ,

µ⋆
j in zj + αBj ,

ε⋆α =
εα
ε0

=





ε⋆0 in Ω \ Iα ,

ε⋆j in zj + αBj ,

where of course µ⋆
j =

µj
µ0

, µ⋆
0 = 1, ε⋆j =

εj
ε0 , 1 ≤ j ≤ m, ε⋆0 = 1, and then µ⋆

0ε
⋆
0 = 1.

5. Numerical Simulations

We present in this part the numerical results obtained from the localization procedures

previously introduced.

5.1. Computational configurations

Two settings for the polyhedral domain Ω, having here the diameter and the shape of the

unit ball, are distinctly considered: the case where Ω contains a single imperfection and when
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it contains multiple imperfections. In the first setting, the single imperfection is a polyhedron

having the shape of a ball of center p = (p1, p2, p3)
T ∈ Ω and of radius α, the discretization of

Ω being represented by

• T 1
α when p = (0.23,−0.31, 0.15)T , with α = 0.2;

• T 2
α when p = (0.23,−0.31, 0.15)T , with α = 0.17.

In the second setting, each imperfection is a polyhedron having the shape of a ball or of an

ellipsoid. We represent now the discretization of Ω by

• T 3
α when Ω contains two ball-like shaped imperfections of centers

(0.23,−0.31, 0.15)T , (−0.17, 0.43,−0.11)T , and of the same ‘radius’ α = 0.2;

• T 4
α when Ω contains three ball-like shaped imperfections of centers

(0.23,−0.31, 0.15)T , (−0.17,−0.43,−0.11)T , (−0.5, 0.25, 0.1)T , with respective ‘radii’ 0.18,

0.16 and 0.17. In this case, we denote by α the maximal radius and by αmin the minimal

radius: α = 0.18, αmin = 0.16;

• T 5
α when Ω contains three imperfections, one of which has the shape of a ball of radius 0.16

and of center (0.23,−0.31, 0.15)T . The second one has the shape of an ellipsoid centered

at (−0.17,−0.43,−0.11)T with ‘semi-axes’ of lengths 0.16, 0.16, 0.18 in the directions

Ox, Oy, Oz respectively. The last imperfection is also ellipsoid-shaped, but centered at

(−0.5, 0.25, 0.1)T with the ‘semi-axes’ (on Oxy) rotated about Oz by an angle of π4 . The

lengths of the ‘semi-axes’ of this imperfection are 0.16, 0.17 and 0.19. Now, α is the

maximal value of the ‘semi-axes’ lengths and the ‘radius’ of the first imperfection, αmin
is the minimal value of these quantities: α = 0.19, αmin = 0.16.

Each one of these discretizations is associated with a conforming mesh made up of tetrahedra

that takes implicitly into account the geometry of each imperfection. The resulting mesh size

h is here systematically smaller than the lowest of the ‘radii’ or ‘semi-axes’ lengths of the

imperfections: h < αmin. In the following table, we give some characteristics of the mesh

in each one of these configurations that were also used in [14], in the localization context of

imperfections not purely electric.

NK NIE NIV nf ne h

T 1
α 45101 49906 6643 3678 5517 0.17725

T 2
α 54368 60753 8215 3662 5493 0.15717

T 3
α 55847 62386 8425 3774 5661 0.15718

T 4
α 64765 72662 9872 3952 5928 0.14810

T 5
α 74093 83334 11363 4246 6369 0.14534

We have denoted by NK, NIE, NIV the number of tetrahedra, internal edges and internal

vertices respectively. Also, nf , ne are respectively the number of boundary faces and boundary

edges.
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5.2. From the procedure based on the Current Projection method

By using the procedure described in Subsection 4.1, we present here numerical results related

to the single imperfection setting. Since this procedure operates in particular, with (4.2)-(4.3),

in exactly the same way as in [14] when the imperfection is purely magnetic, we uniquely consider

here the purely electric and electromagnetic (with real permittivity) contexts in association with

(4.4)-(4.5). Hereafter, µ0 = ε0 = 1.
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Fig. 5.1. Semi-log representation of the relative error on the center (percentage) with respect to some

values of ε1, when µ1 = 1, from T 1
α (−−−) and T 2

α (−−−).
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Fig. 5.2. Semi-log representation of the relative error on the center (percentage) with respect to some

values of ε1, for µ1 = 1 (−−−) and µ1 = 5 (−−−), from T 1
α .

While the measurements in (4.4)-(4.5) are known, namely for ε1 6= ε0, ε1 > 0, the recon-

struction of the center of the imperfection will always be possible. For the reconstruction of

the ’radius’ α, the measurements in (4.4) are needed, and our simulations require of course

the numerical evaluation of one of the diagonal coefficients of the polarization tensor M1(ε0ε1 )

associated with the imperfection (such an evaluation is done as indicated in [8]).

The representations in Figs. 5.1-5.2, after considering in simulations the configurations

T 1
α , T

2
α , concern the relative error on the center p of the imperfection, |p− ph|IR3/|p|IR3 (where

| . |IR3 denotes the infinity norm on IR3), with ph the center of the localized imperfection. It

is observed with respect to values used for ε1 (ε1 > ε0) that this relative error presents an

asymptotic behavior and in particular a deterioration for large values of ε1. The relative error
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on the center obtained from T 2
α is slightly smaller than the one resulting from T 1

α .

As indicates Fig. 5.2 in association with T 1
α , for different considerations of µ1, this relative

error keeps the same behavior with respect to ε1.

Fig. 5.3(a) presents the cross-sections at x = p1 = 0.23, y = p2 = −0.31 and z = p3 = 0.15,

of the localized imperfection resulting from T 1
α when µ1 = 1, ε1 = 5. The experiments associated

with Figs. 5.3(b)-5.3(c) are also related to T 1
α but deal with the contexts of higher electric

contrast and electromagnetic contrast.

The results represented in Fig. 5.4 are obtained from the configuration T 2
α . The experiment

associated with Fig. 5.4(a) considers a purely electric contrast whereas the one associated with
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Fig. 5.3. Respective cross-sections at x = p1, y = p2 and z = p3, from T 1
α . Superposition of the original

imperfection (−−−) whose center is marked by “+”, and of the localized imperfection (−−−) with its

center marked by “×”. (a): µ1 = 1, ε1 = 5; (b): µ1 = 1, ε1 = 250; (c): µ1 = 3, ε1 = 5.
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Fig. 5.4. Respective cross-sections at x = p1, y = p2 and z = p3, from T 2
α . Superposition of the original

imperfection (−−−) whose center is marked by “+”, and of the localized imperfection (−−−) with its

center marked by “×”. (a): µ1 = 1, ε1 = 3; (b): µ1 = 3, ε1 = 5.

Fig. 5.4(b) is performed with an electromagnetic contrast.

The evaluation (based on T 1
α , T 2

α ) with good numerical accuracy of the measurements

required in (4.4)-(4.5) has contributed to obtain such concrete results.

By considering other values of µ1, and of ε1 (where certain are associated with Fig. 5.2),

results similar to those represented in Figs. 5.3-5.4 arise also from simulations with T 1
α , T

2
α .

It follows that the procedure described in Subsection 4.1 leads, with (4.4)-(4.5), to effective

localizations in purely electric and electromagnetic (with real permittivity) configurations.

5.3. From the procedure based on an Inverse Fourier method

We present here localization results obtained in the single imperfection context (m = 1)

as well as from the multiple imperfections setting (m > 1), by making use of the procedure

described in Subsection 4.2. Since this procedure operates, with (4.7), in the same way as in [14]

when in particular the imperfections are purely magnetic, we uniquely consider here the purely

electric and electromagnetic (with real permittivity) configurations in association with (4.10).

Recalling that the outcome of the procedure is the sequence of modules of the terms that

derive from the application of the inverse Fourier transform reported in Subsection 4.2, the

presentation of results will consist of representing, after a rescaling by − 1
2 , contour-plots based

on this sequence, additionally enriched by a usual linear interpolation process. In order to

overcome numerical instabilities that could be induced by the consideration of an arbitrarily

large value of ηmax in the stage that consists of building the data of the procedure (n3 numerical
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Fig. 5.5. Contour-plot views respectively from the x−direction, the y−direction and the z−direction,

by using T 1
α . Here, ηmax = 10, n = 10 and η⋆ = 3. (a): µ1 = 1, ε1 = 5; (b): µ1 = 10, ε1 = 5.

measurements), a cutoff process is incorporated (as in [14]). Hence, a threshold η⋆ (independent

of the centers and shapes of imperfections as well as of µα, εα) is considered such that for η with

‖η‖ > ‖(η⋆, η⋆, η⋆)
T ‖, the associated datum is set equal to 0. All our numerical experiments

are then described with respect to ηmax, n and η⋆, in addition to the physical parameters µα,

εα. Furthermore, all the computations are performed in double precision arithmetic in each

experiment (as it was also the case in Subsection 5.2). Systematically µ0 = ε0 = 1, and suitable

values for η⋆ will result from computations.

At first, we present the results regarding the single imperfection context and compare some

of these results with those of Subsection 5.2. Figs. 5.5-5.6 show the results obtained from the

configurations T 1
α and T 2

α . In the simulations, ηmax = 10 and it has been considered ρ = 2 as

the step size for sampling, i.e., n = 10. The expected order of resolution is then π
2ηmax

≈ 0.157.

The mentioned cutoff process is required since this value of ηmax appears numerically large as

observed from simulations.

As indicated in Fig. 5.5, the localization from T 1
α is successfully achieved in purely electric

and electromagnetic settings.

We notice from the experiments associated with Fig. 5.6 that the localization of a smaller

imperfection is also achieved with good numerical accuracy, according to the fixed order of

resolution.

The experiment associated with Fig. 5.6(a) considers a purely electric contrast whereas the

ones related to Figs. 5.6(b)-5.6(c) are performed with electromagnetic contrasts.
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Fig. 5.6. Contour-plot views respectively from the x−direction, the y−direction and the z−direction,

by using T 2
α . Here, ηmax = 10, n = 10 and η⋆ = 3. (a): µ1 = 1, ε1 = 3; (b): µ1 = 10, ε1 = 5; (c):

µ1 = 3, ε1 = 5.

By comparing the results presented here (see Figs. 5.5(a), 5.6(a) and 5.6(c)) with those of

the previous subsection (see Figs. 5.3(a) and 5.4), we notice in this single imperfection context

that the present localization procedure is less efficient than the one based on the Current

Projection method. Namely, the required number of numerical measurements is very large and

the obtained results are less accurate.

We keep however great interest in the present localization procedure, since devoted to the

multiple imperfections context and hence potentially suitable for extended applications. We

are thus also concerned with an inspection of the noise impact on the procedure.

When the numerical measurements are corrupted with random additive noise generated

from the Gaussian normal distribution, we summarize through Fig. 5.7 some of the results
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Fig. 5.7. Same as for Fig. 5.6(a), namely with µ1 = 1, ε1 = 3, and incorporating here (a): 15% of

random noise; (b): 20% of random noise; (c): 25% of random noise.

that are obtained, for beginning, in the single imperfection context. For low noise levels, the

localization is stable. The results start to become very erroneous from incorporations of more

than 20% of noise, as it can be observed for instance from Fig. 5.7(c).

Let us consider now the multiple imperfections context. We use successively ρ = 2, 5
4

and expect as before the same order of resolution. The suited values for η⋆ shall result again

from simulations. In the presentation of results, when the z−direction, for instance, will be

concerned, the software used for the present postprocessing will display, besides contour-plot

obtained on the plane Oxy, horizontal and vertical segments for which the intersections corre-

spond to centers of the original imperfections viewed on Oxy.
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Fig. 5.8. Contour-plot views respectively from the x−direction, the y−direction and the z−direction,

by using T 3
α . Here, ηmax = 10, n = 10 and η⋆ = 3. (a): µ1 = µ2 = 1, ε1 = ε2 = 5; (b): µ1 = 1, µ2 = 10,

ε1 = 3, ε2 = 5; (c): µ1 = 10, µ2 = 5, ε1 = 5, ε2 = 10 and incorporating 5% of random noise.

Fig. 5.8 presents results obtained from the configuration T 3
α and by fixing ρ = 2. The same

number of measurements as in the single imperfection context is considered. The experiment

associated with Fig. 5.8(a) concerns the localization of purely electric imperfections.

Results similar to those associated with Fig. 5.8(a) are obtained from simulations by taking

now µ1 = µ2 = 1, ε1 = ε2 = 10.

Fig. 5.8(b) presents the results obtained in the context of two imperfections one of which is

purely electric and the other is electromagnetic.

When from T 3
α the numerical measurements are corrupted with random additive noise,

as indicates also the experiment associated with Fig. 5.8(c) and concerning electromagnetic

imperfections, the localization is quite stable for low noise levels.
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Fig. 5.9. Contour-plot views respectively from the x−direction, the y−direction and the z−direction,

by using T 4
α . Here, ηmax = 10, n = 16. (a): µj = 1, εj = 5 (1 ≤ j ≤ 3), and η⋆ = 2.5; (b): µ1 = 5,

ε1 = 3, µ2 = 1, ε2 = 5, µ3 = 5, ε3 = 5, and η⋆ = 3.

Regarding the experiments performed from T 4
α and T 5

α , we use for ρ a unique value, ρ = 5
4 ,

by taking into account that these configurations are associated with the same physical region

of interest in the procedure. A larger value of n than previously is considered though expecting

the same order of resolution.

Each of the experiments associated with Figs. 5.9(a), 5.10(a) and 5.10(b) concerns the

localization of imperfections that are purely electric or else electromagnetic. Similar results

arise from simulations by using the parameters values of the experiment associated with Fig.

5.9(a) and by taking now µj = 5, εj = 5 (1 ≤ j ≤ 3), as well as those of the experiment related

to Fig. 5.10(b) but with µj = 10, εj = 5 (1 ≤ j ≤ 3).

The results represented in Figs. 5.9(b), 5.10(c) and 5.11 are related to the localization in

the presence of purely electric and electromagnetic imperfections, or in the unique presence of

purely electric imperfections.

When the numerical measurements are corrupted with random additive noise, we summarize

through Fig. 5.11 some of the results based on T 5
α . For low noise levels, the localization is quite

stable. The results start to become very erroneous from incorporations of more than 15%

of noise, as it can be observed for instance from Figs. 5.11(c) and 5.11(d).

As a first part of conclusions regarding the procedure used in this subsection, we notice,

according to the fixed order of resolution, that the localization is also achieved with good nu-

merical accuracy in the multiple imperfections context.
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Fig. 5.10. Contour-plot views respectively from the x−direction, the y−direction and the z−direction,

by using T 5
α . Here, ηmax = 10, n = 16, η⋆ = 3. (a): µ1 = 1, ε1 = 3, µ2 = 1, ε2 = 5, µ3 = 1, ε3 = 10;

(b): µj = 5, εj = 10 (1 ≤ j ≤ 3); (c): µ1 = 1, ε1 = 3, µ2 = 1, ε2 = 5, µ3 = 10, ε3 = 5.

The localization accuracy can be improved by considering very large values for ηmax. Such

a consideration amplifies however the CPU time of the evaluation stage of numerical mea-

surements. Typically, even for a value of ηmax which is not very large, as in the previous

experiments, we are concerned with a number of measurements which remains large and, even

with the cutoff process of the Fourier domain that is applied, the evaluation stage of these

is relatively costly (despite an efficient numerical computation associated with (3.2)). When

compared in the single imperfection context with the procedure of Subsection 4.1, it results

that the evaluation stage of measurements required by the present procedure is very expensive.

We have been thus led to consider an order of resolution which is not very “fine” but appears

pertinent, in order to perform numerical experiments with reasonable CPU time.
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Fig. 5.11. Same as for Fig. 5.10(a), namely with µ1 = 1, ε1 = 3, µ2 = 1, ε2 = 5, µ3 = 1, ε3 = 10, and

incorporating here (a): 10% of random noise; (b): 15% of random noise; (c): 18% of random noise;

(d): 20% of random noise.
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6. Conclusions

A framework in static regime has been presented for the localization in a three-dimensional

bounded domain of purely electric imperfections, of purely magnetic imperfections and of elec-

tromagnetic imperfections (with real electric permittivity). This framework is based on a per-

turbation formula that results from a limit model in electric field, in combination with suited

inversion algorithms. Two localization procedures using boundary measurements as data are

thus described and numerically investigated; namely, the procedure defined from a Current Pro-

jection algorithm for the single imperfection context and the procedure defined from an Inverse

Fourier method for the multiple imperfections context. Each of these procedures operating in

particular in the same way as in [14] for configurations of purely magnetic imperfections while

the measurements in (4.2)-(4.3) or (4.7) are required, the numerical experiments have there-

fore been essentially devoted here to purely electric settings and to electromagnetic (with real

permittivity) settings by making use of the measurements in (4.4)-(4.5) or (4.10).

We notice that the procedure based on a Current Projection method is the most robust

in the single imperfection case, whereas the second procedure seems well-suited to the context

of large numbers of imperfections. Experiments with such numbers of imperfections were not

performed since, according to configuration hypotheses, the imperfections should then be much

smaller than those considered here, and the size of the rectangular system resulting from (3.2)

would be in that case too large, prohibiting thus flexible numerical simulations because of the

excessive memory storage and CPU time (evaluation of measurements). However, with the help

for instance of a reduced meshes process [15] in simulations for achieving the evaluation stage of

measurements, experiments based on the presented approach and involving then much smaller

imperfections shall be considered in a forthcoming study.
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