
J. Math. Study
doi: 10.4208/jms.v48n1.15.02

Vol. 48, No. 1, pp. 18-29
March 2015

Self-adaptive Extrapolated Gauss-Seidel Iterative

Methods

Guo-Yan Meng1, Rui-Ping Wen2,∗

1 Department of Mathematics, Xinzhou Teacher University, Xinzhou 034000, Shanxi
Province, P.R. China.
2 Department of Mathematics, Taiyuan Normal University, Taiyuan 030012, Shanxi
Province, P.R. China.

Received 19 November, 2014; Accepted (in revised version) 14 January, 2015

Abstract. In this paper, we consider a self-adaptive extrapolated Gauss-Seidel method
for solving the Hermitian positive definite linear systems. Based on optimization mod-
els, self-adaptive optimal factor is given. Moreover, we prove the convergence of the
self-adaptive extrapolated Gauss-Seidel method without any constraints on optimal
factor. Finally, the numerical examples show that the self-adaptive extrapolated Gauss-
Seidel method is effective and practical in iteration number.

AMS subject classifications: 65F10, 65F50, 15A06

Key words: Hermitian positive definite, Gauss-Seidel iteration, self-adaptive, extrapolated, linear
systems.

1 Introduction

Consider the large sparse system of linear equations

Ax=b, (1.1)

where A = (aij) ∈ Cn×n is a known nonsingular matrix and x,b ∈ Cn are vectors. The
splitting iterative method is one of the important way for solving the linear systems (1.1).
For any splitting A = M−N with a nonsingular matrix M, the basic splitting iterative
method can be expressed as

x(k+1)=M−1Nx(k)+M−1b, k=0,1,··· . (1.2)

Let T=M−1N and c=M−1b. Then (1.2) can be also written as

x(k+1)=Tx(k)+c, k=0,1,··· . (1.3)

∗Corresponding author. Email addresses: wenrp@tynu.edu.cn (R.-P. Wen)

http://www.global-sci.org/jms 18 c©2015 Global-Science Press

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 19

Consider the usual splitting of A,

A=D−L−U, (1.4)

where D is a diagonal matrix, −L and −U are the strictly lower and the strictly upper
triangular parts of A, respectively. Taking M = D−L in (1.2), the iteration (1.3) yields
the classical Gauss-Seidel iterative method, and the iteration matrix of the Gauss-Seidel
method is given by

T=(D−L)−1U. (1.5)

In order to accelerate the convergence of the Gauss-Seidel iterative method for solving
the linear systems (1.1), Davod [4] presented the generalized Gauss-Seidel (GGS) iterative
method, i.e., using the splitting A=Tm−Em−Fm, where

Tm =(tij)=

{
−aij, for |i− j|≤m,
0, otherwise.

So we can see that the GGS method is essentially block-type Gauss-Seidel method.
Gunawardena et. al [7] first introduced the modified Gauss-Seidel method with pre-

conditioned technique. In particular, when coefficient matrix is an M-matrix, or a Z-
matrix, or an H-matrix, many researchers [9,13,15,20,21,23,24] presented also the modi-
fications and improvements of preconditioners to solve the linear systems (1.1). Recently,
Kohno et. al [12], Kotakemori et. al [14] and Shen et. al [22] extended Gunawardena,
Jain and Snyders’ works to more general cases and employed new different modified
Gauss-Seidel methods by using the general preconditioner P with various parameters.
But these modifications and improvements of Gauss-Seidel iterative method are only
theoretical and the numerical examples in those references are only small size problems,
and the amount of calculation is rapidly increased with the problem size. And it is the
most troubling that it is difficult in choosing many proper parameters for these methods.

With regard to parameters that have a significant effect on the convergence rate of the
algorithm, Hadjidimos [8] considered the extrapolation and relaxation methods, Hadjidi-
mos and Yeyios [10] proposed the extrapolated Gauss-Seidel method

x(k+1)=[(1−α)I+αT]x(k)+αc, (1.6)

where T is given by (1.5). Galanis et. al [6] presented methods that compute optimal
relaxation factor in the different case for p-cyclic matrices. Bai et. al [1] and Chen et.
al [2] considered the optimal convergence factor and the contraction factors of the GSOR
method, respectively. Zhang et. al [27] presents a global relaxed non-stationary mul-
tisplitting multi-parameter method, while Migallón et. al [19] proposed non-stationary
multisplitting with general weighting matrices.

But the optimal parameters or the weighting matrices of all above-mentioned meth-
ods are determined in advance, they are not known to be good or bad, this influences the
efficiency of these iterative methods. Fortunately, the papers [26] and [18] have applied

20 G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29

the optimal model to compute the weight factors. Based on this strategy and the extrap-
olated methods [17], we consider the self-adaptive extrapolated Gauss-Seidel method for
the Hermitian positive definite systems.

The rest of the paper is organized as follows. Next section is the preliminaries. In
Section 3, We focus on to discuss the new algorithm and its convergence. Section 4 is
devoted to the numerical experiments.

2 Preliminaries

In this section, we give some of the notations and lemmas which will be used in what
follows.

As usual, Cn×n is used to denote the n×n complex matrix set, and Cn the n-dimensional
complex vector set. The matrix AH denotes the conjugate transpose of A. Similarly the
conjugate transpose of a vector x is denoted by xH. A matrix A∈Cn×n is called Hermitian
positive definite (or semidefinite), if it is Hermitian and for all x∈Cn,x 6=0, it holds that
xH Ax>0(or xH Ax≥0). If A is Hermitian positive definite, the norm

‖x‖A =‖A1/2x‖2=(Ax,x)1/2 (2.1)

is called the A-norm [5] or energy norms of the vector x.

Lemma 2.1. (Convergence, [25]) Let A=D−E−EH be an n×n Hermitian matrix with D is
Hermitian and positive definite and D−E is nonsingular. Then, the Gauss-Seidel iterative method
is convergent if and only if A is positive definite.

Lemma 2.2. (Extrapolation, [10,17]) The sufficient conditions for the convergence of the extrap-
olated Gauss-Seidel method (EGS) (1.6) are:

1. the original Gauss-Seidel method is convergent,

2. 0<α<2/(1+ρ(T)), where T is given by (1.5).

Lemma 2.3. ([11]) If a nonsingular A is Hermitian positive definite, then there exists a unique
Hermitian positive definite B such that B2=A.

Lemma 2.4. (Cauchy-Schwarz inequality) If (·,·) is an inner product on a vector space V over
the field C, then

|(x,y)|2 ≤ (x,x)(y,y), f or all x,y∈V. (2.2)

Equality occurs if and only if x and y are linear dependent, that is, x = αy or y = αx for some
α∈C.

Lemma 2.5. ([11]) Every vector norm ‖·‖ on Cn is a uniformly continuous function.

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 21

3 Self-adaptive EGS method

In this section, we give the self-adaptive extrapolated Gauss-Seidel method.

We assume that the symmetric positive definite matrix A has the following splitting,
as (1.4)

A=D−L−LT, (3.1)

and the iteration matrix of the Gauss-Seidel method is given by

T=(D−L)−1LT. (3.2)

Algorithm 3.1.(The Self-adaptive Extrapolated GS(SEGS) Iterative Method)

Let x(0)∈Cn be an arbitrary initial guess. For k=0,1,2,.. . until the sequence of iterations
{x(k)}∞

k=0⊂Cn converges, compute x(k+1) by the following scheme:

x̃(k)=Tx(k)+(D−L)−1b, (3.3)

x(k+1)=αx̃(k)+(1−α)x(k), (3.4)

where α is the solution of the following optimization model

min
α

1

2
(x(k))H Ax(k)−(x(k))Hb. (3.5)

Alternatively, (3.4) can be rewritten as:

x(k+1)= x(k)+αk(D−L)−1r(k), (3.6)

where

r(k)=b−Ax(k), (3.7)

and αk is obtained by the optimization model (3.5). By simplified derivation, (3.5) yields
the desired value of αk

αk =

(
(D−L)−1r(k)

)H
r(k)

(
(D−L)−1r(k)

)H
A(D−L)−1r(k)

=

(
(D−L)−1r(k),r(k)

)

(
(D−L)−1r(k),A(D−L)−1r(k)

) . (3.8)

22 G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29

Accordingly, the iteration matrix Gαk
at the k-th step for the Algorithm 3.1 is

Gαk
=αkT+(1−αk)I

=αk(D−L)−1LH+(1−αk)(D−L)−1(D−L)

=(D−L)−1
(

αkLH+(1−αk)(D−L)
)

= I−αk(D−L)−1A. (3.9)

If αk is independent on the iteration index k, Algorithm 3.1 will be the extrapolated
Gauss-Seidel method. From Lemma 2.1 and Lemma 2.2, we know that the extrapolated
Gauss-Seidel method of the Hermitian positive definite matrix is convergent with 0<α<
2/(1+ρ(T)). But our Algorithm 3.1 will be proved convergence without any constraints
on α.

Theorem 3.1. Let A be a Hermitian positive definite matrix. Then Algorithm 3.1 is convergent
with respect to ‖·‖A for any choice of the initial guess x(0).

Proof. Let x∗ be the unique solution of linear system of equations (1.1), x(k) be the solution
generated by the Algorithm 3.1 at the k-th step, and

ε(k)= x(k)−x∗, k=0,1,2,···

be the error at the k-th step of iteration. And the following can be obtain from (3.7),

r(k)=b−Ax(k)=Ax∗−Ax(k)=−Aε(k). (3.10)

Similar to (3.10),

r(k+1)=−Aε(k+1). (3.11)

For simplification, we define

z(k)=(D−L)−1r(k). (3.12)

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 23

Due to the properties of the matrix A and the definition of A-norm (2.1), we have

‖ε(k+1)‖2
A =

(
Aε(k+1),ε(k+1)

)
=
(
−r(k+1),Gαk

ε(k)
)

=
(
−r(k)+αk A(D−L)−1r(k),

(
I−αk(D−L)−1A

)
ε(k)

)

=
(
−r(k),ε(k)

)
+αk

((
r(k),(D−L)−1Aε(k)

)
+
(

Az(k),ε(k)
))

−α2
k

(
Az(k),(D−L)−1Aε(k)

)

=‖ε(k)‖2
A+

(
z(k),r(k)

)

(
z(k),Az(k)

)•

(

r(k),−z(k)
)
+
(

z(k),−r(k)
)
−

(
z(k),r(k)

)

(
z(k),Az(k)

)
(

Az(k),−z(k)
)

=‖ε(k)‖2
A−

(
z(k),r(k)

)2

(
z(k),Az(k)

) . (3.13)

By Lemma 2.3, there exists a Hermitian positive definite matrix B=A1/2, such that

‖ε(k+1)‖2
A

‖ε(k)‖2
A

= 1−

(
z(k),r(k)

)2

(
z(k),Az(k)

)(
Aε(k),ε(k)

)

= 1−

(
z(k),−Aε(k)

)2

(
z(k),Az(k)

)(
Aε(k),ε(k)

)

= 1−

(
A1/2z(k),A1/2ε(k)

)2

(
A1/2z(k),A1/2z(k)

)(
A1/2ε(k),A1/2ε(k)

) . (3.14)

And in (3.14) the vectors A1/2z(k) and A1/2ε(k) are linear independent. If not, there exists
a real β, so

z(k)=βε(k),

⇔ (D−L)−1r(k)=βA−1r(k),

⇔ βdet(D−L)=det(A), or r(k)=0.

But on the account of (3.1) and (3.10) the equations (3.15) is, in general, not true, so we are
done. This means that the equality does not hold for Cauchy-Schwarz inequality (2.2),
namely

0<

(
A1/2z(k),A1/2ε(k)

)2

(
A1/2z(k),A1/2z(k)

)(
A1/2ε(k),A1/2ε(k)

) <1. (3.15)

24 G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29

Then, it follows from (3.15) and (3.14)

‖ε(k+1)‖A

‖ε(k)‖A

<1. (3.16)

Consequently, by Lemma 2.5 there exist a positive number ρ<1 such that

‖ε(k+1)‖A

‖ε(k)‖A

≤ρ, (3.17)

which is equivalent to

lim
k→∞

ε(k+1)=0.

Hence, we have proved this theorem.

Remark 3.1. For Algorithm 3.1, the optimization model in each iteration require the ’ex-
act’ solution. However, this may be very costly and impractical in actual implementa-
tions, particularly when the scale of the original problem is very large. To improve the
computing efficiency of the Algorithm 3.1, similar to the Algorithm 4.2.1 of [16], we will
employ a simple strategy to perform a new updating after k iteration steps.

4 Numerical experiments

In this section, we use three different numerical examples to show the feasibility and
effectiveness of Algorithm 3.1 when it is used to find the solution of the linear systems
(1.1) with Hermitian positive definite coefficient matrix. The results of all examples are
compared with some of the better existing iterative methods. That is to say, we solve the
system of linear equations (1.1) by Algorithm 3.1, the basic Gauss-Seidel(GS) method and
the extrapolated Gauss-Seidel (EGS) method with some arbitrary values of α. Also, we
solve the system of linear equations (1.1) by the GGS method presented by Davod [4].

For each example, we compare all the above methods from the view of the iteration
numbers (denoted by IT) and in terms of the total CPU execution time (denoted by CPU).
All timing results are reported in seconds. In the following tables, k stands for a new
updating after k iteration steps.

In our implementations, the initial vector x(0) is set to zero and the iteration is termi-
nated when the current iterate satisfied

‖b−Ax(k)‖2

‖b‖2
≤10−6, (4.1)

where ‖·‖2 refers to L2-norm. In addition, all codes were run in MATLAB [version
7.12.0.635 (R2011a)] in double precision and all experiments were performed on a per-
sonal computer with 3.20GHz central processing unit [Intel(R) Pentium(R)(TM)2 CPU
G2130], 4G memory and Microsoft Window 7 operating system (6.1).

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 25

Table 1: IT and CPU for SEGS, EGS, GGS and GS methods for Example 4.1.

p SEGS EGS GGS GS
k=3 α=1.2 α=1.6

20 IT 83 351 262 254 422
CPU 0.004764 0.017525 0.012783 0.333172 0.018299

40 IT 141 1220 914 880 1465
CPU 0.016766 0.113716 0.090983 5.556272 0.136999

60 IT 341 2546 1908 1835 3056
CPU 0.075822 0.486628 0.364732 28.617407 0.579725

80 IT 582 4294 3219 3093 5153
CPU 0.226410 1.356569 1.009542 91.436310 1.652199

100 IT 896 6439 4828 4637 7727
CPU 0.538224 3.297829 2.443553 225.282633 3.911060

120 IT 1216 8962 6721 6454 10755
CPU 1.197484 7.282420 5.268566 465.063581 8.453618

140 IT 1874 11849 8886 8533 14220
CPU 2.632422 13.892134 10.198586 865.481567 16.005318

Example 4.1 The test PDE problem we are considering in this Example is

−∆u≡−

(
∂2u

∂x2
+

∂2u

∂y2

)
= f (x,y) (4.2)

with (x,y) ∈ Ω, where Ω = (0,1)×(0,1) is a square region. For the test problem, only
the matrix A, which is constructed from nine-point finite difference discretization of the
given PDE (4.2), is of importance, so the right-hand side vector b is created artificially.
Hence, the right-hand side function f (x,y) in Examples 4.1 is not relevant. So the coeffi-
cient matrix

A= tridiag(D,G,D)∈R
q×q,

where
D= tridiag(−4,20,−4)∈R

p×p,G= tridiag(−1,−4,−1)∈R
p×p.

and the right-hand side vector b is chosen so that b = Ae with e being the vector of all
entries equal to 1. For this example, we set p=q.

In Table 1 we list the iteration numbers and the CPU times in seconds with respect to
SEGS, EGS, GGS and GS methods.

Example 4.2 Consider the following system of linear equations, for which A=(ak,j)∈
Cn×n is defined as follows:

ak,j =

8, for j= k;
−1, for max{1,k−4}≤ j≤{n,k+4},k 6= j;
0, otherwise.

26 G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29

Table 2: Comparison of computational results for Example 4.2.

n SEGS EGS GGS GS
k=3 α=1.3 α=1.7

200 IT 379 5857 4477 5711 7616
CPU 0.016880 0.195555 0.151929 0.413341 0.257282

300 IT 1208 13059 9985 12374 16979
CPU 0.052650 0.487455 0.375210 0.838990 0.627948

400 IT 1958 23112 17672 22535 -
CPU 0.094912 0.959881 0.737526 1.835402 -

500 IT 4058 - 27538 - -
CPU 0.223778 - 1.257733 - -

600 IT 6155 - - - -
CPU 0.358920 - - - -

800 IT 14774 - - - -
CPU 0.974303 - - - -

1000 IT 26174 - - - -
CPU 1.998696 - - - -

Notes. the symbol ”−” denotes that the iteration is failing.

Table 3: Comparison of computational results for Example 4.3.

m SEGS EGS GGS GS
k=2 α=1.2 α=1.5

40 IT 244 1077 861 650 1294
CPU 0.025882 0.090070 0.069360 3.753191 0.106702

60 IT 715 2383 1905 1433 2861
CPU 0.135437 0.384121 0.310215 23.252445 0.464395

80 IT 1379 4201 3360 2524 5043
CPU 0.420499 1.101609 0.879608 72.220400 1.305668

100 IT 2303 6531 5223 3922 7838
CPU 1.096738 2.599714 2.053889 185.670557 3.041264

120 IT 3443 9372 7496 5626 11248
CPU 2.443417 5.284361 4.215272 414.458203 6.519183

140 IT 4741 12725 10179 7638 15271
CPU 4.835817 10.409126 8.386267 839.549724 12.475579

160 IT 6359 16590 13270 9957 19909
CPU 9.122510 18.628376 14.842852 1446.824142 22.187892

We chose the right-hand side vector b=(1,1,··· ,1)T . The above coefficient matrix is ill-
conditioned if n is large.

The following Table 2 shows the iteration numbers and the CPU times in seconds

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 27

Table 4: Comparison of computational results for Example 4.4.

m SEGS EGS GGS GS
k=2 α=1.2 α=1.4

16 IT 155 343 293 7 413
CPU 0.009617 0.015375 0.014176 0.010085 0.019080

32 IT 487 1391 1191 7 1670
CPU 0.057962 0.135159 0.118799 0.052460 0.164740

64 IT 2181 5556 4762 7 6669
CPU 0.820887 1.658372 1.421410 0.223723 2.076621

96 IT 4337 12454 10674 7 14946
CPU 3.657569 7.898573 6.892787 0.581035 9.832173

128 IT 7790 22069 18916 7 26484
CPU 11.980302 25.932632 22.352691 0.935597 32.644396

160 IT 12109 - 29483 7 -
CPU 32.774894 - 58.186521 1.752083 -

192 IT 17903 - - 7 -
CPU 68.103404 - - 3.301699 -

Notes. the symbol ”−” denotes that the iteration is failing.

with respect to SEGS, EGS, GGS and GS methods.

Example 4.3 Consider linear equations with Hermitian positive definite coefficient ma-
trix that rise in the reference [26], we choose A=0.1π I+µK with µ=0.02, and the matrix
K possesses the form K= I⊗V+V⊗E with

V=(m+1)2tridiag(−1,2,1)∈R
m×m,

where I is the identity matrix, and ⊗ is the Kronecker product symbol. Hence, A is
an n×n block-tridiagonal matrix, with n = m2. We take the right-hand side vector b =
(1,1,··· ,1)T.

Table 3 shows the iteration numbers and the CPU times in seconds with respect to
SEGS, EGS, GGS and GS methods.

Example 4.4 We consider the complex linear system Ax=b, with the Hermitian positive
definite coefficient matrix A=W+iT+(8−4i)I ∈Cn×n being given by

W= tridiag(c,a,c)∈R
n×n, T= I⊗Vc+Vc⊗ I∈R

n×n, (4.3)

with

Vc=V−e1eT
m+emeT

1 ∈R
m×m

28 G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29

and

V= tridiag(−1,2,1)∈R
m×m,

e1=(1,0,··· ,0)T ∈R
m, em =(0,··· ,0,1)T ∈R

m,

a=(1,3,5,··· ,2n−3,2n−1)T ∈R
n,

c=(−1,−2,··· ,−(n−1))T ∈R
n−1.

The right-hand side vector b is defined as b=Ax∗, with x∗=(1,2,··· ,n)T ∈Rn.

In Table 4 we report results for SEGS, EGS, GGS and GS methods.
We see from Tables 1−4 that for all methods, the iteration numbers and the CPU

times grow with problem size. However, this growth is slower for SEGS than for other
methods, such as GS, GGS and EGS with fixed extrapolated factors. The reason is that
the stationary of weighting factors is deleted, the range for finding the optimal weighting
factors is extended. Hence, we show that our SEGS method with fixed initial guess α=1
is practical and effective.

Acknowledgments

This work was supported by NSFC (No.11371275) and NSF of Shanxi Province
(No.2014011006-1, 2012011015-6).

References

[1] Z.-Z. Bai, B. N. Parlett and Z.-Q. Wang. On generalized successive overrelaxation methods
for augmented linear systems. Numer. Math., 2005, 102: 1–38.

[2] F. Chen, Y.-L. Jiang and B. Zheng. On contraction and semi-contration factors of GSOR
method for augmented linear systems. J. Comput. Math., 2010, 28(6): 901–912.

[3] F. Chen, Q.-Q. Liu. On semi-convergence of modified HSS iteration methods. Numer. Algor.,
2013, 64: 507C-518.

[4] K. S. Davod. Generalized Jacobi and Gauss-Seidel methods for solving linear system of equa-
tions. Numer. Math. J. Chinese Univ.(English Ser.), 2007, 16(2): 164–170.

[5] A. Frommer and D. B. Szyld. Weighted max norms, splitttngs, and overlapping additive
Schwarz iterations. Numer. Math., 1999, 83(2): 259–278.

[6] S. Galanis, A. Hadjidimos, D. Noutsos and M. Tzoumas. On the optimum relaxation factor
associated with p-cyclic matrices. Linear Algebra Appl., 1992, 162: 433–445.

[7] A. D. Gunawardena, S. K. Jain and L. Snyder. Modified iterative method for consistent linear
systems. Linear Algebra Appl., 1991, 154-156: 123–143.

[8] A. Hadjidimos. A survey of the iterative methods for the solution of linear systems by ex-
trapolation, relaxation and other techniques. Internatl. J. Comput. Math., 1987, 20: 37–51.

[9] A. Hadjidimos, D. Noutsos and M. Tzoumas. More on modifications and improvements of
classical iterative schemes for M-matrices. Linear Algebra Appl., 2003, 364: 253–279.

[10] A. Hadjidimos and A. Yeyios. The principle of extrapolation in connection with the acceler-
ated overrelaxation method. Linear Algebra Appl., 1980, 30: 115–128.

G.-Y. Meng, R.-P. Wen / J. Math. Study, 48 (2015), pp. 18-29 29

[11] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, England, 1986.
[12] T. Kohno, H. Kotakemori, H. Niki and M. Usui. Improving modified iterative methods for

Z-matrices. Linear Algebra Appl., 1997, 267: 113–123.
[13] H. Kotakemori, K. Harada, M. Morimoto and H. Niki. A comparison theorem for the itera-

tive method with the preconditioner (I+Smax). J. Comput. Appl. Math., 2002, 145: 373–378.
[14] H. Kotakemori, H. Niki and N. Okamoto. Accelerated iterative method for Z-matrices. J.

Comput. Appl. Math., 1996, 75(1): 87–97.
[15] W. Li and W. Sun. Modified Gauss-Seidel type methods and Jacobi type methods for Z-

matrices. Linear Algebra Appl., 2000, 317: 227–240.
[16] W.-W. Lin. Lecture notes of matrix computations. National Tsing Hua University, Hsinchu,

Taiwan, 2008.
[17] M. M. Martins. On an accelerated overrelaxation iterative method for linear systems with

strictly diagonally dominant matrix. Math. Comput., 1980, 35(152): 1269–1273.
[18] G.-Y. Meng, C.-L.Wang and X.-H. Yan. Self-adaptive non-stationary parallel multisplitting

two-stage iterative methods for linear systems. Lecture Notes in Computer Science, 2012,
7696: 38–47.

[19] V. Migallón, J. Penadés and D. B. Szyld. Nonstationary multisplittings with general weight-
ing matrices. SIAM J. Matrix Anal. Appl., 2001, 22: 1089–1094.

[20] H. Niki, K. Harada, M. Morimoto and M. Sakakihara. The survey of preconditioners used
for accelerating the rate of convergence in the Gauss-Seidel method. J. Comput. Appl. Math.,
2004(164–165): 587–600.

[21] H. Niki, T. Kohno and M. Morimoto. The preconditioned Gauss-Seidel method faster than
the SOR method. J. Comput. Appl. Math., 2008, 218(1): 59–71.

[22] H. Shen, X. Shao, Z. Huang and C. Li. Precondition Gauss-Seidel iterative method for Z-
matrices linear systems. Bull. Korean Math. Soc., 2011, 48(2): 303–314.

[23] L.-Y. Sun. Some extensions of the improved modified Gauss-Seidel iterative method for H-
matrices. Numer. Linear Algebra Appl., 2006, 13(10): 869-876.

[24] M. Usui, H. Niki and T. Kohno. Adaptive Gauss-Seidel method for linear systems. Inter. J.
Comput. Math., 1994, 51: 119–125.

[25] R. S. Varga. Matrix iterative analysis. Springer Berlin Heidelberg, Germany, 2009.
[26] C.-L. Wang, G.-Y. Meng and Y.-H. Bai. Practical convergent splittings and acceleration meth-

ods for non-hermitian positive definite linear systems. Adv. Comput. Math., 2012, doi:
10.1007/s10444-012-9278-8.

[27] L.-T. Zhang, T.-Z. Huang and T.-X. Gu. Global relaxed non-stationary multisplitting multi-
parameter methods Internatl. J. Comput. Math., 2008, 85(2): 211–224.

