Numerical Methods to Solve the Complex Symmetric Stabilizing Solution of the Complex Matrix Equation $X + A^T X^{-1} A = Q$

Yao Yao, Xiao-Xia Guo*

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, Shandong, P.R. China.

Received 6 December, 2014; Accepted (in revised version) 15 January, 2015

Abstract. When the matrices *A* and *Q* have special structure, the structure-preserving algorithm was used to compute the stabilizing solution of the complex matrix equation $X + A^T X^{-1}A = Q$. In this paper, we study the numerical methods to solve the complex symmetric stabilizing solution of the general matrix equation $X + A^T X^{-1}A = Q$. We not only establish the global convergence for the methods under an assumption, but also show the feasibility and effectiveness of them by numerical experiments.

AMS subject classifications: 65F10, 65F35, 65F50

Key words: Complex matrix, complex symmetric stabilizing solution, fixed-point method, structure-preserving algorithm.

1 Introduction

The nonlinear matrix equation $X + A^T X^{-1} A = Q$, where *A* is real and *Q* is symmetric positive definite, arises in several applications, such as the analysis of ladder network, dynamic programming, the Green's function in nano research, control theory and stochastic filtering. These equations have been studied in [5,6], for example.

Recently, there arises the need to consider the matrix equation

$$X + A^T X^{-1} A = Q,$$
 (1.1)

where *A* is complex and *Q* is complex symmetric. First, it is explained in [2] that the computation of the surface Green's function in nano research [7] can be reduced to the problem of solving the matrix equation (1.1), where $Q = Q_1 + i\eta I$ with Q_1 real symmetric and η positive scalar, but the matrix *A* is still a real matrix. And then it is shown in [4] that a quadratic eigenvalue problem arising from the vibration analysis of fast trains can

http://www.global-sci.org/jms

^{*}Corresponding author. *Email addresses:* guoxiaoxia@ouc.edu.cn (X.-X.Guo), 877133678@qq.com (Y.Yao)

be solved efficiently and accurately by solving a matrix equation of the form (1.1), where A is complex and Q is complex symmetric. Moreover, the matrix A has only one nonzero block in the upper-right corner, and Q is block tridiagonal and block Toeplitz. In those two applications, the existence of a unique complex symmetric stabilizing solution has been proved using advanced results on linear operators. The fixed-point method and doubling algorithm were given to solve the stabilizing solution of the matrix equation (1.1).

For the more general complex equation (1.1), the existence of a unique complex symmetric stabilizing solution has been proved in [1]. However, the corresponding numerical experiments were not given. In this paper, according to the idea proposed in [1], we mainly discuss the numerical algorithms to solve the stabilizing solution of this equation. In Section 2, we introduce the preliminaries of the complex matrix equation (1.1). In Section 3, the fixed-point method (FPI), modified fixed-point method (MFPI) and structure-preserving algorithm (SPA) are proposed to find the complex symmetric stabilizing solution of (1.1) and their convergence are analyzed under an assumption. In Section 4, numerical examples are given to show the feasibility and effectiveness of the FPI, MFPI and SPA methods, and concluding remarks are made in Section 5.

2 Preliminaries

For equation (1.1) we write:

$$A = A_1 + iA_2, \quad Q = Q_1 + iQ_2, A_1, A_2 \in \mathbb{R}^{n \times n}, \quad Q_1 = Q_1^T, \quad Q_2 = Q_2^T \in \mathbb{R}^{n \times n}.$$
(2.1)

Definition 2.1. We define that

- (a) a solution *X* of (1.1) is said to be stabilizing if $\rho(X^{-1}A) < 1$, where $\rho(\cdot)$ denotes the spectral radius;
- (b) W > 0 denotes the positive definiteness of a Hermitian matrix W.

The following theorem is given by [1].

Theorem 2.1. ([1]) If the matrices A_2 and Q_2 satisfy that

$$Q_2 + e^{i\theta} A_2^T + e^{-i\theta} A_2 > 0, \theta \in [0, 2\pi],$$
(2.2)

then the equation (1.1) has a stabilizing solution.

We suppose the inequality (2.2) holds throughout this paper. Obviously, if a positive semi-definite matrix is added to Q_2 , it still holds. Let

$$M_0 = \begin{bmatrix} A & 0 \\ Q & -I \end{bmatrix}, \quad L_0 = \begin{bmatrix} 0 & I \\ A^T & 0 \end{bmatrix}.$$
 (2.3)

Y. Yao, X.-X. Guo / J. Math. Study, 48 (2015), pp. 53-65

It's easily seen that the matrix pair (M_0, L_0) satisfies the relation:

$$M_0 J M_0^T = L_0 J L_0^T,$$

where

$$J = \left[\begin{array}{cc} O & I \\ -I & 0 \end{array} \right]$$

Then the matrix pair (M_0, L_0) or the matrix pencil $M_0 - \lambda L_0$ is called *T*-symplectic.

Since the $M_0 - \lambda L_0$ has no eigenvalues on the unit circle (see [1, lemma 1]), then there is a matrix $\begin{bmatrix} U \\ V \end{bmatrix} \in \mathbb{C}^{2n \times n}$ of full rank spanning the stable invariant subspace of $M_0 - \lambda L_0$ corresponding to the stable eigenvalue matrix $S \in \mathbb{C}^{n \times n}$, i.e.,

$$M_0 \begin{bmatrix} U \\ V \end{bmatrix} = L_0 \begin{bmatrix} U \\ V \end{bmatrix} S, \qquad (2.4)$$

where $\rho(S) < 1$, and the matrix *U* is invertible. Further, by Theorem 3 in [1], we have the following theorem.

Theorem 2.2. *Let* $X_s = VU^{-1}$ *. Then*

- (a) X_s is complex symmetric;
- (b) X_s is invertible;
- (c) X_s is a stabilizing solution of (1.1);
- (d) $X_{s,2} = Im(X_s)$ is positive definite.

Theorem 2.3. (Bendixson's theorem) if X and Y are Hermitian $n \times n$ matrices with eigenvalues

$$\xi_1 \leq \xi_2 \leq \cdots \leq \xi_n, \quad \eta_1 \leq \eta_2 \leq \cdots \leq \eta_n,$$

then every eigenvalue λ of X + iY is contained in the rectangle

$$\xi_1 \leq Re(\lambda) \leq \xi_n, \quad \eta_1 \leq Im(\lambda) \leq \eta_n.$$

3 The numerical methods for the equation (1.1)

In this section, we introduce the fixed-point method (FPI), modified fixed-point method (MFPI) and structure-preserving algorithm (SPA) to solve the complex symmetric stabilizing solution of the matrix equation (1.1). Then we give the feasibility analysis of the FPI and the convergence analysis of the SPA, respectively. Algorithm 1. (The fixed-point iteration method (FPI))

 $X_0 = Q,$ $X_{k+1} = Q - A^T X_k^{-1} A, \quad k = 0, 1, 2, \cdots.$

Theorem 3.1. Let A and Q be as in (2.1). The sequence $\{X_k\}$ generated by Algorithm 1 is well-defined, and $\{X_k\}$ is complex symmetric.

Proof. We write T_k be the block $k \times k$ ($k \ge 1$) matrix given by

$$T_{k} = \begin{bmatrix} Q & -A^{T} & & \\ -A & Q & \ddots & \\ & \ddots & \ddots & -A^{T} \\ & & -A & Q \end{bmatrix}$$
$$= \begin{bmatrix} Q_{1} & -A_{1}^{T} & & \\ -A_{1} & Q_{1} & \ddots & \\ & \ddots & \ddots & -A_{1}^{T} \\ & & -A_{1} & Q_{1} \end{bmatrix} + i \begin{bmatrix} Q_{2} & -A_{2}^{T} & & \\ -A_{2} & Q_{2} & \ddots & \\ & \ddots & \ddots & -A_{2}^{T} \\ & & -A_{2} & Q_{2} \end{bmatrix}.$$

Let

$$C_{k} = \begin{bmatrix} Q_{1} & -A_{1}^{T} & & \\ -A_{1} & Q_{1} & \ddots & \\ & \ddots & \ddots & -A_{1}^{T} \\ & & -A_{1} & Q_{1} \end{bmatrix}, D_{k} = \begin{bmatrix} Q_{2} & -A_{2}^{T} & & \\ -A_{2} & Q_{2} & \ddots & \\ & \ddots & \ddots & -A_{2}^{T} \\ & & -A_{2} & Q_{2} \end{bmatrix}.$$
(3.1)

Then for each $k \ge 1$ we can write

$$T_k = C_k + iD_k. \tag{3.2}$$

Note that $Q_2 + e^{i\theta}A_2^T + e^{-i\theta}A_2 > 0$ for all $\theta \in [0,2\pi]$ is equivalent to that D_k is positive definite. It follows from Theorem 2.3 (Bendixson's theorem) that T_k is invertible. By the block Gaussian elimination performed on the matrix

We can obtain the sequence $\{X_k\}$. In fact, $X_0 = Q$ is the (1,1) block in (3.3); when the (1,1) block is used to eliminate the (2,1) block, the new (2,2) block is X_1 ; when the new (2,2) block is used to eliminate the (3,2) block, the new (3,3) block is X_2 ; and so on. Because T_k is invertible for each $k \ge 1$, $\{X_k\}$ is well-defined and invertible for each $k \ge 0$. Q is complex symmetric, i.e. X_0 is complex symmetric. We can suppose that X_k is complex symmetric. It can obtains that

$$X_{k+1}^T = Q^T - A^T X_k^{-T} A = Q - A^T X_k^{-1} A = X_{k+1}.$$

 X_{k+1} is complex symmetric. $\{X_k\}$ is thus complex symmetric.

When $\rho(X_s^{-1}A) \approx 1$, the convergence of Algorithm 1 will be very slow in general. The strategy proposed in [14] for improving the convergence of Algorithm 1 generates the following modified fixed-point method (MFPI).

Algorithm 2. (The modified fixed-point iteration method (MFPI)) $X_0 = Q,$ $X_{k+1} = Q - A^T X_k^{-1} A,$ $X_{k+1} = (X_k + X_{k+1})/2, k = 0, 1, 2, \cdots.$

Numerical experiments will show that the convergence of Algorithm 2 is often much faster than that of Algorithm 1. However, a rigorous convergence analysis remains an open problem.

Let M_0 and L_0 be as given in (2.3), then we have the following algorithm.

Algorithm 3. (The structure-preserving algorithm (SPA)) Let $A_0 = A, Q_0 = Q, P_0 = 0$. For $k = 0, 1, 2, \cdots$, compute

$$A_{k+1} = A_k (Q_k - P_k)^{-1} A_k,$$

$$Q_{k+1} = Q_k - A_k^T (Q_k - P_k)^{-1} A_k,$$

$$P_{k+1} = P_k + A_k (Q_k - P_k)^{-1} A_k^T.$$

We will show that the SPA will not break down, and Q_k converges to X_s quickly.

Lemma 3.1. Let A and Q be as in (2.1), and the sequences $\{A_k\}$, $\{Q_k\}$ and $\{P_k\}$ be generated by the SPA. Let $W_k = Q_k - P_k$, where $W_0 = Q$, $k \ge 0$. If $T_k[-A^T, Q, -A]$ is an $k \times k$ block tridiagonal and invertible matrix having the structure given in (3.3), then W_k is nonsingular.

Proof. Proceed by induction. Since $W_k = Q_k - P_k$, where $W_0 = Q$, $k \ge 1$. We suppose that the sequence $\{W_k\}$ satisfies:

$$W_{k+1} = Q_{k+1} - P_{k+1}$$

= $Q_k - A_k^T (Q_k - P_k)^{-1} A_k - P_k - A_k (Q_k - P_k)^{-1} A_k^T$
= $W_k - A_k^T W_k^{-1} A_k - A_k W_k^{-1} A_k^T$.

For k = 0, we apply the even-odd permutation of block rows and columns of $T_3[-A^T, Q, -A]$ and obtain the matrix

$$\begin{bmatrix} W_0 & 0 & -A^T \\ 0 & W_0 & -A \\ -A & -A^T & W_0 \end{bmatrix} = \begin{bmatrix} G_2[W_0] & F_1[-A^T, -A] \\ E_1[-A, -A^T] & G_1[W_0] \end{bmatrix},$$

where $G_j[W]$ is the $j \times j$ block diagonal matrix with diagonal blocks equal to W, $F_j[C,R]$ is the $(j+1) \times j$ block lower bidiagonal matrix having C on the main diagonal and R on the lower diagonal, and $E_j[C,R]$ is the $j \times (j+1)$ block upper bidiagonal matrix having R on the main diagonal and C on the upper diagonal. For convenience, we denote the matrix $G_2[W_0]$, $F_1[-A^T, -A]$, $E_1[-A, -A^T]$ and $G_1[W_0]$ as G_2 , F_1 , E_1 and G_1 , respectively.

 $G_2[W_0], F_1[-A^T, -A], E_1[-A, -A^T] \text{ and } G_1[W_0] \text{ as } G_2, F_1, E_1 \text{ and } G_1, \text{ respectively.}$ Since $W_0 = Q$ is nonsingular, so the matrix $G_2 = \begin{bmatrix} W_0 & 0 \\ 0 & W_0 \end{bmatrix}$ is nonsingular. Using one step of block Gaussian elimination to the above permuted matrix we can get

$$\begin{bmatrix} G_2 & F_1 \\ E_1 & G_1 \end{bmatrix} \begin{bmatrix} I & -G_2^{-1}F_1 \\ 0 & I \end{bmatrix} = \begin{bmatrix} G_2 & 0 \\ E_1 & G_1 - E_1G_2^{-1}F_1 \end{bmatrix}$$

It is easily seen that

$$\begin{bmatrix} G_2 & F_1 \\ E_1 & G_1 \end{bmatrix} = \begin{bmatrix} G_2 & 0 \\ E_1 & G_1 - E_1 G_2^{-1} F_1 \end{bmatrix} \begin{bmatrix} I & G_2^{-1} F_1 \\ 0 & I \end{bmatrix}.$$

Thus,

$$|G_1-E_1G_2^{-1}F_1| = \frac{|T_3[-A^T,Q,-A]|}{|G_2|}.$$

Since $T_3[-A^T,Q,-A]$ and G_2 are invertible, the matrix $G_1 - E_1G_2^{-1}F_1$ is nonsingular. Obviously, the W_1 is nonsingular, which can be expressed by

$$W_{1} = G_{1} - E_{1}G_{2}^{-1}F_{1}$$

= $W_{0} - [-A, -A^{T}] \begin{bmatrix} W_{0} & 0 \\ 0 & W_{0} \end{bmatrix}^{-1} \begin{bmatrix} -A^{T} \\ -A \end{bmatrix}$
= $W_{0} - A^{T}W_{0}^{-1}A - AW_{0}^{-1}A^{T}$,

where $A = A_0$.

Next, considering the *k* case, we assume that W_i (*i*=1,...,*k*-1) is nonsingular.

Applying the even-odd permutation of block rows and columns to the matrix $T_{2^{k+1}-1}$ [$-A_0^T, Q_0, -A_0$] yields

$$\begin{bmatrix} G_{2^{k}}[Q_{0}] & F_{2^{k}-1}[-A_{0}^{T}, -A_{0}] \\ E_{2^{k}-1}[-A_{0}, -A_{0}^{T}] & G_{2^{k}-1}[Q_{0}] \end{bmatrix}$$

After performing one step of Gaussian elimination we obtain the matrix

$$T_{2^{k}-1}[-A_{1}^{T},Q_{1},-A_{1}]$$

= $G_{2^{k}-1}[Q_{0}]-E_{2^{k}-1}[-A_{0},-A_{0}^{T}]G_{2^{k}}[Q_{0}^{-1}]F_{2^{k}-1}[-A_{0}^{T},-A_{0}].$

By the properties of the Schur complement it follows that if Q_0 and $T_{2^{k+1}-1}[-A_0^T, Q_0, -A_0]$ are nonsingular, then $T_{2^k-1}[-A_1^T, Q_1, -A_1]$ is nonsingular. From the inductive hypothesis, assuming W_i (i = 1, ..., k-1) nonsingular, then the *k*th step of cyclic reduction can be performed, starting with blocks $-A_1^T, Q_1, -A_1$, i.e., W_k is nonsingular for each $k \ge 0$. \Box

Theorem 3.2. Let A and Q be as in (2.1). Let X_s be the stabilizing solution of (1.1) and Y_s be the stabilizing solution of the dual equation $Y + AY^{-1}A^T = Q$ (The existence of Y_s is also guaranteed by the argument leading to Theorem 2.1). Then

- (a) The sequences $\{A_k\}$, $\{Q_k\}$ and $\{P_k\}$ generated by Algorithm 3 are well-defined. Moreover, Q_k and P_k are complex symmetric;
- (b) Q_k converges to X_s quadratically, A_k converges to 0 quadratically, $Q P_k$ converges to Y_s quadratically, with

$$\lim_{k \to \infty} \sup \sqrt[2^k]{\|Q_k - X_s\|} \le (\rho(X_s^{-1}A))^2, \quad \limsup_{k \to \infty} \sqrt[2^k]{\|A_k\|} \le \rho(X_s^{-1}A),$$
$$\lim_{k \to \infty} \sup \sqrt[2^k]{\|Q - P_k - Y_s\|} \le (\rho(X_s^{-1}A))^2,$$

where $\|\cdot\|$ is any matrix norm.

Proof. (a) From (3.2), we can know that $T_k = C_k + iD_k$ for each $k \ge 1$, where C_k is Hermitian matrix and D_k is positive definite Hermitian matrix. It follows from Theorem 2.3 (Bendixson's theorem) that T_k is invertible.

Let $W_k = Q_k - P_k$, where $W_0 = Q$, $k \ge 0$. Then W_k is nonsingular for each $k \ge 0$ from Lemma 3.1. The sequences $\{A_k\}$, $\{Q_k\}$ and $\{P_k\}$ in Algorithm 3 are well-defined. Q_k and P_k are complex symmetric because Q is complex symmetric.

(b) X_s be the stabilizing solution of (1.1) if and only if

$$M_0 \begin{bmatrix} I \\ X_s \end{bmatrix} = L_0 \begin{bmatrix} I \\ X_s \end{bmatrix} X_s^{-1} A.$$
(3.4)

We now define the sequences $\{M_k\}$ and $\{L_k\}$, where

$$M_{k} = \begin{bmatrix} A_{k} & 0\\ Q_{k} & -I \end{bmatrix}, \quad L_{k} = \begin{bmatrix} -P_{k} & I\\ A_{k}^{T} & 0 \end{bmatrix}.$$
(3.5)

 $W_k = Q_k - P_k$ is nonsingular for each $k \ge 0$, we can define the following matrix

$$\widetilde{M}_{k} = \begin{bmatrix} A_{k}(Q_{k}-P_{k})^{-1} & 0\\ -A_{k}^{T}(Q_{k}-P_{k})^{-1} & I \end{bmatrix}, \quad \widetilde{L}_{k} = \begin{bmatrix} I & -A_{k}(Q_{k}-P_{k})^{-1}\\ 0 & A_{k}^{T}(Q_{k}-P_{k})^{-1} \end{bmatrix},$$

and we also know that $\widetilde{M}_k L_k = \widetilde{L}_k M_k (k \ge 0)$. By computing $\widetilde{L}_k L_k$ and $\widetilde{M}_k M_k (k \ge 0)$, gives

$$\widetilde{L}_{k}L_{k} = \begin{bmatrix} -(P_{k} + A_{k}(Q_{k} - P_{k})^{-1}A_{k}^{T}) & I \\ A_{k}^{T}(Q_{k} - P_{k})^{-1}A_{k}^{T} & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -P_{k+1} & I \\ A_{k+1}^{T} & 0 \end{bmatrix} = L_{k+1},$$

$$\widetilde{M}_k M_k = \begin{bmatrix} A_k (Q_k - P_k)^{-1} A_k & 0\\ Q_k - A_k^T (Q_k - P_k)^{-1} A_k & -I \end{bmatrix}$$
$$= \begin{bmatrix} A_{k+1} & 0\\ Q_{k+1} & -I \end{bmatrix} = M_{k+1}.$$

Premultiplying (3.4) with \widetilde{M}_0 , and using $\widetilde{M}_0L_0 = \widetilde{L}_0M_0$, $M_1 = \widetilde{M}_0M_0$, $L_1 = \widetilde{L}_0L_0$, we get that

$$\widetilde{M}_0 M_0 \begin{bmatrix} I \\ X_s \end{bmatrix} = \widetilde{M}_0 L_0 \begin{bmatrix} I \\ X_s \end{bmatrix} X_s^{-1} A,$$

$$M_1 \begin{bmatrix} I \\ X_s \end{bmatrix} = \widetilde{L}_0 M_0 \begin{bmatrix} I \\ X_s \end{bmatrix} X_s^{-1} A = \widetilde{L}_0 (L_0 \begin{bmatrix} I \\ X_s \end{bmatrix} X_s^{-1} A) X_s^{-1} A$$
$$= L_1 \begin{bmatrix} I \\ X_s \end{bmatrix} (X_s^{-1} A)^2.$$

So for each $k \ge 0$, we can know that

$$M_{k} \begin{bmatrix} I \\ X_{s} \end{bmatrix} = L_{k} \begin{bmatrix} I \\ X_{s} \end{bmatrix} (X_{s}^{-1}A)^{2^{k}}.$$
(3.6)

Substituting M_k and L_k into (3.6) yields

$$A_{k} = (X_{s} - P_{k})(X_{s}^{-1}A)^{2^{k}}, \quad Q_{k} - X_{s} = A_{k}^{T}(X_{s}^{-1}A)^{2^{k}}.$$
(3.7)

Similarly we have

$$\hat{M}_0 \begin{bmatrix} I \\ Y_s \end{bmatrix} = \hat{L}_0 \begin{bmatrix} I \\ Y_s \end{bmatrix} Y_s^{-1} A^T,$$

where

$$\hat{M}_0 = \begin{bmatrix} A^T & 0 \\ Q & -I \end{bmatrix}, \quad \hat{L}_0 = \begin{bmatrix} 0 & I \\ A & 0 \end{bmatrix}.$$

We also know that $M_0 - \lambda L_0 = \begin{bmatrix} A & -\lambda I \\ Q - \lambda A^T & -I \end{bmatrix}$, so

$$\begin{bmatrix} A & -\lambda I \\ Q - \lambda A^T & -I \end{bmatrix} \begin{bmatrix} I & 0 \\ -(-I)^{-1}(Q - \lambda A^T) & I \end{bmatrix} = \begin{bmatrix} \lambda^2 A^T - \lambda Q + A & -\lambda I \\ 0 & -I \end{bmatrix}.$$

Taking the determinant on the two sides we obtain

$$|M_0 - \lambda L_0| = |\lambda^2 A^T - \lambda Q + A|| - I| = (-1)^n |\lambda^2 A^T - \lambda Q + A|.$$

It follows that $M_0 - \lambda L_0$ has the same eigenvalues as $\lambda^2 A^T - \lambda Q + A$. Similarly, $\hat{M}_0 - \lambda \hat{L}_0$ has the same eigenvalues as $\lambda^2 A - \lambda Q + A^T ((\lambda^2 A^T - \lambda Q + A)^T = \lambda^2 A - \lambda Q + A^T)$. Then $X_s^{-1}A$ and $Y_s^{-1}A^T$ have the same eigenvalues, and $\rho(X_s^{-1}A) = \rho(Y_s^{-1}A^T)$. For each $k \ge 0$, we have

$$\hat{M}_{k}\begin{bmatrix}I\\Y_{s}\end{bmatrix} = \hat{L}_{k}\begin{bmatrix}I\\Y_{s}\end{bmatrix}(Y_{s}^{-1}A^{T})^{2^{k}},$$
(3.8)

where

$$\hat{M}_k = \begin{bmatrix} A_k^T & 0\\ \hat{Q}_k & -I \end{bmatrix}, \quad \hat{L}_k = \begin{bmatrix} -\hat{P}_k & I\\ A_k & 0 \end{bmatrix}, \quad \hat{P}_k = Q - Q_k, \quad \hat{Q}_k = Q - P_k.$$

Substituting \hat{M}_k and \hat{L}_k into (3.8) yields

$$A_k^T = (Y_s - \hat{P}_k)(Y_s^{-1}A^T)^{2^k}, \quad \hat{Q}_k - Y_s = A_k(Y_s^{-1}A^T)^{2^k}.$$
(3.9)

It follows from (3.7)-(3.9) that

$$Q_{k} - X_{s} = A_{k}^{T} (X_{s}^{-1}A)^{2^{k}}$$

= $(Y_{s} - \hat{P}_{k})(Y_{s}^{-1}A^{T})^{2^{k}} (X_{s}^{-1}A)^{2^{k}}$
= $(Q_{k} - X_{s} + (X_{s} + Y_{s} - Q))(Y_{s}^{-1}A^{T})^{2^{k}} (X_{s}^{-1}A)^{2^{k}}$

Consequently

$$(Q_k - X_s) - (Q_k - X_s)(Y_s^{-1}A^T)^{2^k}(X_s^{-1}A)^{2^k} = (X_s + Y_s - Q)(Y_s^{-1}A^T)^{2^k}(X_s^{-1}A)^{2^k},$$

$$(Q_k - X_s)(I - (Y_s^{-1}A^T)^{2^k}(X_s^{-1}A)^{2^k}) = (X_s + Y_s - Q)(Y_s^{-1}A^T)^{2^k}(X_s^{-1}A)^{2^k}.$$

It follows that

$$\lim_{k \to \infty} \sup \sqrt[2^k]{\|Q_k - X_s\|} \le \rho(X_s^{-1}A)\rho(Y_s^{-1}A^T) = (\rho(X_s^{-1}A))^2 < 1$$

So Q_k converges to X_s quadratically. Since $\hat{P}_k = Q - Q_k$ and $\{Q_k\}$ is bounded, then $\{\hat{P}_k\}$ is bounded. By (3.9), we know

$$\lim_{k \to \infty} \sup \sqrt[2^k]{\|A_k\| \le \rho(Y_s^{-1}A^T) = \rho(X_s^{-1}A) < 1.}$$

Thus A_k converges to 0 quadratically. By $\hat{Q}_k - Y_s = A_k (Y_s^{-1} A^T)^{2^k}$ in (3.9) and (3.8) we have

$$\limsup_{k \to \infty} \sup \sqrt[2^k]{\|\hat{Q}_k - Y_s\|} = \limsup_{k \to \infty} \sup \sqrt[2^k]{\|Q - P_k - Y_s\|} \le (\rho(X_s^{-1}A))^2 < 1.$$

So $Q - P_k$ converges to Y_s quadratically.

The SPA is said to be structure-preserving since for each $k \ge 0$, M_k and L_k have the structures given in (3.5), and the pencil $M_k - \lambda L_k$ is *T*-symplectic.

4 Numerical experiments

In this section we present some numerical results to illustrate the convergence behavior of the algorithms for computing the stabilizing solution X_s of the equation (1.1). We use the relative residual (denoted as "RES")

$$\text{RES} = \frac{\|X + A^T X^{-1} A - Q\|}{\|X\| + \|A\|^2 \|X^{-1}\| + \|Q\|},$$

where $\|\cdot\|$ is the spectral norm.

In our implementations, all iterations are terminated when the current iterate satisfies $||X_{k+1}-X_k|| < 10^{-10}$. The numerical experiments were done in Matlab R2010a with respect to the initial value ($X_0 = Q$), the numbers of iterations (denoted as "IT"), the CPU time in seconds.

Example 4.1. Consider the matrix equation $X + A^T X^{-1}A = Q_1 + i\eta I$, where $A \in \mathbb{R}^{n \times n}$, $Q_1 = Q_1^T \in \mathbb{R}^{n \times n}$, A and Q are generated randomly and $\eta \ge 0$. We will take n = 16,32,64,128, and $\eta = \frac{1}{4}, \frac{1}{2}, 1$, respectively. The numerical results are shown in Table 1, 2, 3.

Example 4.2. Consider the matrix equation $X + A^T X^{-1}A = Q$, where *A* and *Q* are given by (2.1), and $Q_2 + A_2 > 0$. Moreover, A_1 , Q_1 , A_2 and Q_2 are generated randomly. In this example, we take n = 16,32,64, and 128, respectively. The numerical results are shown in Table 4.

		n				
Method		16	32	64	128	
FPI	IT	349	431	494	809	
	CPU	1.152	3.436	11.445	76.475	
	RES	2.67e-14	4.20e-015	5.79e-16	6.74e-17	
MFPI	IT	199	238	245	331	
	CPU	0.569	0.573	4.109	14.475	
	RES	2.27e-14	4.16e-15	4.62e-16	6.31e-17	
SPA	IT	11	20	23	32	
	CPU	0.054	0.092	0.753	2.376	
	RES	2.08e-16	3.50e-16	1.86e-16	1.44e-17	

Table 1: The numerical results for example 1 ($\eta = \frac{1}{4}$).

Table 2: The numerical results for example 1 $(\eta = \frac{1}{2})$.

		n			
Method		16	32	64	128
FPI	IT	141	228	280	348
	CPU	0.427	2.147	6.776	33.656
	RES	3.32e-14	3.45e-015	5.48e-16	6.98e-17
MFPI	IT	96	144	173	229
	CPU	0.352	0.639	1.503	4.028
	RES	3.11e-14	3.30e-15	5.15e-16	5.31e-17
SPA	IT	9	18	21	30
	CPU	0.041	0.111	0.648	2.104
	RES	5.61e-17	5.54e-17	1.67e-17	1.25e-17

Numerical results in Tables 1–3 show that the effects of the FPI, MFPI and SPA methods become more effective with the increase value η , since the value of $\rho(X_s^{-1}A)$ is close to 1 with small η . From Tables 1–4, we observe that the FPI, MFPI and SPA methods are feasible to compute the stabilizing solution of (1.1). More specifically, it can also see that CPU(SPA) < CPU(MFPI) < CPU(FPI), IT(SPA) < IT(MFPI) < IT(FPI), RES(SPA) < RES(MFPI) < RES (MFPI). This indicates that the SPA is more efficient than the MFPI and FPI.

5 Conclusion

In this paper, we present the fixed-point iteration (FPI), the modified fixed-point iteration (MFPI) and the structure-preserving algorithm (SPA) for computing the stabilizing solu-

		n			
Method		16	32	64	128
FPI	IT	134	202	230	275
	CPU	0.590	0.714	3.875	26.773
	RES	4.76e-14	3.94e-014	4.28e-16	6.84e-17
MFPI	IT	79	80	89	121
	CPU	0.246	0.354	1.499	3.385
	RES	2.86e-14	2.83e-14	3.85e-16	4.54e-17
SPA	IT	7	13	18	24
	CPU	0.024	0.070	0.519	2.072
	RES	5.13e-17	2.37e-17	1.71e-17	1.32e-17

Table 3: The numerical results for example 1 (η =1).

Table 4: The numerical results for example 2.

		n			
Method		16	32	64	128
FPI	IT	617	1000	1000	1000
	CPU	1.547	6.159	23.312	111.304
	RES	8.26e-15	2.11e-15	5.42e-04	1.89e-05
MFPI	IT	276	821	1000	1000
	CPU	0.793	5.687	22.948	110.977
	RES	3.36e-15	2.08e-15	1.12e-04	1.51e-05
SPA	IT	12	17	19	38
	CPU	0.052	0.261	15.930	28.086
	RES	2.14e-15	1.27e-15	1.62e-14	1.07e-12

tion of (1.1). Different from the reference [1], numerical experiments are given to show the feasibility and effectiveness of the FPI, MFPI and SPA methods.

Acknowledgments

This research was supported by NSFC (No. 11071228) and the Shandong Province Young Scientists Research Awards Fund (BS2010SF032).

References

[1] C.-H. Guo, Y.-C. Kuo, and W.-W. Lin. Complex symmetric stabilizing solution of the matrix equation $X + A^T X^{-1} A = Q$. Linear Algebra Appl., 2011, 435: 1187–1192.

- [2] C.-H. Guo and W.-W. Lin. The matrix equation $X + A^T X^{-1} A = Q$ and its application in nano research. SIAM J. Sci. Comput., 2010, 32: 3020–3038.
- [3] C.-H. Guo, Y.-C. Kuo, and W.-W. Lin. On a nonlinear matrix equation arising in nano research. SIAM J. Matrix Anal. Appl., 2012, 33: 235–262.
- [4] C.-H. Guo and W.-W. Lin. Solving a structured quadratic eigenvalue problem by a structurepreserving doubling algorithm. SIAM J. Matrix Anal. Appl., 2010, 31: 2784–2801.
- [5] C.-Y. Chiang, E. K.-W. Chu, C.-H. Guo, T.-M. Huang, W.-W. Lin, and S.-F. Xu. Convergence analysis of the doubling algorithm for several nonlinear matrix equations in the critical case. SIAM J. Matrix Anal. Appl., 2009, 31: 227–247.
- [6] J. C. Engwerda, A. C. M. Ran, and A. L. Rijkeboer. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation $X + A^*X^{-1}A = Q$. Linear Algebra Appl., 1993, 186: 255–275.
- [7] S. Datta. Nanoscale device modeling: the Green's function method. Superlattices and Microstructures, 2000, 28: 253–278.
- [8] D. A. Bini, L. Gemignani, and B. Meini. Computations with infinite Toeplitz matrices and polynomials. Linear Algebra Appl., 2002, 343-344: 21–61.
- [9] B. Meini. Efficient computation of the extreme solutions of $X + A^*X^{-1}A = Q$ and $X A^*X^{-1}A = Q$. Math. Comp., 2002, 71: 1189–1204.
- [10] W.-W. Lin and S.-F. Xu. Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl., 2006, 28: 26–39.
- [11] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin. A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl., 2005, 396: 55–58.
- [12] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., 2006, 28: 1029–1051.
- [13] X. Zhan. Computing the extremal positive definite solutions of a matrix equation. SIAM J. Sci. Comput., 1996, 17: 1167–1174.
- [14] J. Tomfohr and O. F. Sankey. Theorelical analysis of electron transport through organic molecules. Journal of Chemical Physics, 2004, 120: 1542–1554.