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Abstract. When the matrices A and Q have special structure, the structure-preserving
algorithm was used to compute the stabilizing solution of the complex matrix equation
X+AT X−1 A=Q. In this paper, we study the numerical methods to solve the complex
symmetric stabilizing solution of the general matrix equation X+ATX−1 A = Q. We
not only establish the global convergence for the methods under an assumption, but
also show the feasibility and effectiveness of them by numerical experiments.
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1 Introduction

The nonlinear matrix equation X+ATX−1 A=Q, where A is real and Q is symmetric pos-
itive definite, arises in several applications, such as the analysis of ladder network, dy-
namic programming, the Green’s function in nano research, control theory and stochastic
filtering. These equations have been studied in [5, 6], for example.

Recently, there arises the need to consider the matrix equation

X+ATX−1A=Q, (1.1)

where A is complex and Q is complex symmetric. First, it is explained in [2] that the
computation of the surface Green’s function in nano research [7] can be reduced to the
problem of solving the matrix equation (1.1), where Q=Q1+iη I with Q1 real symmetric
and η positive scalar, but the matrix A is still a real matrix. And then it is shown in [4]
that a quadratic eigenvalue problem arising from the vibration analysis of fast trains can
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be solved efficiently and accurately by solving a matrix equation of the form (1.1), where
A is complex and Q is complex symmetric. Moreover, the matrix A has only one nonzero
block in the upper-right corner, and Q is block tridiagonal and block Toeplitz. In those
two applications, the existence of a unique complex symmetric stabilizing solution has
been proved using advanced results on linear operators. The fixed-point method and
doubling algorithm were given to solve the stabilizing solution of the matrix equation
(1.1).

For the more general complex equation (1.1), the existence of a unique complex sym-
metric stabilizing solution has been proved in [1]. However, the corresponding numeri-
cal experiments were not given. In this paper, according to the idea proposed in [1], we
mainly discuss the numerical algorithms to solve the stabilizing solution of this equation.
In Section 2, we introduce the preliminaries of the complex matrix equation (1.1). In Sec-
tion 3, the fixed-point method (FPI), modified fixed-point method (MFPI) and structure-
preserving algorithm (SPA) are proposed to find the complex symmetric stabilizing so-
lution of (1.1) and their convergence are analyzed under an assumption. In Section 4,
numerical examples are given to show the feasibility and effectiveness of the FPI, MFPI
and SPA methods, and concluding remarks are made in Section 5.

2 Preliminaries

For equation (1.1) we write:

A=A1+iA2, Q=Q1+iQ2,
A1,A2∈Rn×n, Q1=QT

1 , Q2=QT
2 ∈Rn×n.

(2.1)

Definition 2.1. We define that

(a) a solution X of (1.1) is said to be stabilizing if ρ(X−1 A)<1, where ρ(·) denotes the
spectral radius;

(b) W>0 denotes the positive definiteness of a Hermitian matrix W.

The following theorem is given by [1].

Theorem 2.1. ([1]) If the matrices A2 and Q2 satisfy that

Q2+eiθ AT
2 +e−iθ A2>0,θ∈ [0,2π], (2.2)

then the equation (1.1) has a stabilizing solution.

We suppose the inequality (2.2) holds throughout this paper. Obviously, if a positive
semi-definite matrix is added to Q2, it still holds. Let

M0=

[
A 0
Q −I

]
, L0=

[
0 I

AT 0

]
. (2.3)
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It’s easily seen that the matrix pair (M0,L0) satisfies the relation:

M0 JMT
0 = L0 JLT

0 ,

where

J=

[
O I
−I 0

]
.

Then the matrix pair (M0,L0) or the matrix pencil M0−λL0 is called T-symplectic.

Since the M0−λL0 has no eigenvalues on the unit circle (see [1, lemma 1]), then there

is a matrix

[
U
V

]
∈C2n×n of full rank spanning the stable invariant subspace of M0−λL0

corresponding to the stable eigenvalue matrix S∈Cn×n, i.e.,

M0

[
U
V

]
= L0

[
U
V

]
S, (2.4)

where ρ(S)<1, and the matrix U is invertible. Further, by Theorem 3 in [1], we have the
following theorem.

Theorem 2.2. Let Xs =VU−1. Then

(a) Xs is complex symmetric;

(b) Xs is invertible;

(c) Xs is a stabilizing solution of (1.1);

(d) Xs,2= Im(Xs) is positive definite.

Theorem 2.3. (Bendixson’s theorem) if X and Y are Hermitian n×n matrices with eigenvalues

ξ1≤ ξ2≤···≤ ξn, η1≤η2 ≤···≤ηn,

then every eigenvalue λ of X+iY is contained in the rectangle

ξ1≤Re(λ)≤ ξn, η1≤ Im(λ)≤ηn.

3 The numerical methods for the equation (1.1)

In this section, we introduce the fixed-point method (FPI), modified fixed-point method
(MFPI) and structure-preserving algorithm (SPA) to solve the complex symmetric stabi-
lizing solution of the matrix equation (1.1). Then we give the feasibility analysis of the
FPI and the convergence analysis of the SPA, respectively.
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Algorithm 1. (The fixed-point iteration method (FPI))

X0=Q,

Xk+1=Q−ATX−1
k A, k=0,1,2,··· .

Theorem 3.1. Let A and Q be as in (2.1). The sequence {Xk} generated by Algorithm 1 is
well-defined, and {Xk} is complex symmetric.

Proof. We write Tk be the block k×k (k≥1) matrix given by

Tk =




Q −AT

−A Q
. . .

. . .
. . . −AT

−A Q




=




Q1 −AT
1

−A1 Q1
. . .

. . .
. . . −AT

1

−A1 Q1



+i




Q2 −AT
2

−A2 Q2
. . .

. . .
. . . −AT

2

−A2 Q2




.

Let

Ck=




Q1 −AT
1

−A1 Q1
. . .

. . .
. . . −AT

1

−A1 Q1




, Dk =




Q2 −AT
2

−A2 Q2
. . .

. . .
. . . −AT

2

−A2 Q2




. (3.1)

Then for each k≥1 we can write

Tk =Ck+iDk. (3.2)

Note that Q2+eiθ AT
2 +e−iθ A2 > 0 for all θ ∈ [0,2π] is equivalent to that Dk is positive

definite. It follows from Theorem 2.3 (Bendixson’s theorem) that Tk is invertible. By
the block Gaussian elimination performed on the matrix

T=




Q −AT

−A Q −AT

. . .
. . .

. . .
. . .

. . .




(3.3)
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We can obtain the sequence {Xk}. In fact, X0=Q is the (1,1) block in (3.3); when the (1,1)
block is used to eliminate the (2,1) block, the new (2,2) block is X1; when the new (2,2)
block is used to eliminate the (3,2) block, the new (3,3) block is X2; and so on. Because Tk

is invertible for each k≥1, {Xk} is well-defined and invertible for each k≥0. Q is complex
symmetric, i.e. X0 is complex symmetric. We can suppose that Xk is complex symmetric.
It can obtains that

XT
k+1=QT−ATX−T

k A=Q−ATX−1
k A=Xk+1.

Xk+1 is complex symmetric. {Xk} is thus complex symmetric.

When ρ(X−1
s A)≈1, the convergence of Algorithm 1 will be very slow in general. The

strategy proposed in [14] for improving the convergence of Algorithm 1 generates the
following modified fixed-point method (MFPI).

Algorithm 2. (The modified fixed-point iteration method (MFPI))

X0=Q,

Xk+1=Q−ATX−1
k A,

Xk+1=(Xk+Xk+1)/2,k=0,1,2,··· .

Numerical experiments will show that the convergence of Algorithm 2 is often much
faster than that of Algorithm 1. However, a rigorous convergence analysis remains an
open problem.

Let M0 and L0 be as given in (2.3), then we have the following algorithm.

Algorithm 3. (The structure-preserving algorithm (SPA)) Let A0=A,Q0=Q,P0=0.
For k=0,1,2,··· , compute

Ak+1=Ak(Qk−Pk)
−1Ak,

Qk+1=Qk−AT
k (Qk−Pk)

−1Ak,

Pk+1=Pk+Ak(Qk−Pk)
−1AT

k .

We will show that the SPA will not break down, and Qk converges to Xs quickly.

Lemma 3.1. Let A and Q be as in (2.1), and the sequences {Ak}, {Qk} and {Pk} be generated by
the SPA. Let Wk =Qk−Pk, where W0=Q, k≥0. If Tk[−AT,Q,−A] is an k×k block tridiagonal
and invertible matrix having the structure given in (3.3), then Wk is nonsingular.



58 Y. Yao, X.-X. Guo / J. Math. Study, 48 (2015), pp. 53-65

Proof. Proceed by induction. Since Wk =Qk−Pk, where W0 =Q, k≥ 1. We suppose that
the sequence {Wk} satisfies:

Wk+1=Qk+1−Pk+1

=Qk−AT
k (Qk−Pk)

−1Ak−Pk−Ak(Qk−Pk)
−1AT

k

=Wk−AT
k W−1

k Ak−AkW−1
k AT

k .

For k=0, we apply the even-odd permutation of block rows and columns of T3[−AT,Q,
−A] and obtain the matrix




W0 0 −AT

0 W0 −A
−A −AT W0


=

[
G2[W0] F1[−AT,−A]

E1[−A,−AT] G1[W0]

]
,

where Gj[W] is the j× j block diagonal matrix with diagonal blocks equal to W, Fj[C,R] is
the (j+1)× j block lower bidiagonal matrix having C on the main diagonal and R on the
lower diagonal, and Ej[C,R] is the j×(j+1) block upper bidiagonal matrix having R on
the main diagonal and C on the upper diagonal. For convenience, we denote the matrix
G2[W0], F1[−AT,−A], E1[−A,−AT] and G1[W0] as G2, F1, E1 and G1, respectively.

Since W0 = Q is nonsingular, so the matrix G2 =

[
W0 0
0 W0

]
is nonsingular. Using

one step of block Gaussian elimination to the above permuted matrix we can get

[
G2 F1

E1 G1

][
I −G−1

2 F1

0 I

]
=

[
G2 0

E1 G1−E1G−1
2 F1

]
.

It is easily seen that

[
G2 F1

E1 G1

]
=

[
G2 0

E1 G1−E1G−1
2 F1

][
I G−1

2 F1

0 I

]
.

Thus,

|G1−E1G−1
2 F1|=

|T3[−AT,Q,−A]|

|G2|
.

Since T3[−AT,Q,−A] and G2 are invertible, the matrix G1−E1G−1
2 F1 is nonsingular. Ob-

viously, the W1 is nonsingular, which can be expressed by

W1=G1−E1G−1
2 F1

=W0−[−A,−AT]

[
W0 0
0 W0

]−1[
−AT

−A

]

=W0−ATW−1
0 A−AW−1

0 AT,
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where A=A0.
Next, considering the k case, we assume that Wi (i=1,.. . ,k−1) is nonsingular.
Applying the even-odd permutation of block rows and columns to the matrix T2k+1−1

[−AT
0 ,Q0,−A0] yields

[
G2k [Q0] F2k−1[−AT

0 ,−A0]
E2k−1[−A0,−AT

0 ] G2k−1[Q0]

]
.

After performing one step of Gaussian elimination we obtain the matrix

T2k−1[−AT
1 ,Q1,−A1]

=G2k−1[Q0]−E2k−1[−A0,−AT
0 ]G2k [Q−1

0 ]F2k−1[−AT
0 ,−A0].

By the properties of the Schur complement it follows that if Q0 and T2k+1−1[−AT
0 ,Q0,−A0]

are nonsingular, then T2k−1[−AT
1 ,Q1,−A1] is nonsingular. From the inductive hypothe-

sis, assuming Wi (i= 1,.. . ,k−1) nonsingular, then the kth step of cyclic reduction can be
performed, starting with blocks −AT

1 ,Q1,−A1, i.e., Wk is nonsingular for each k≥0.

Theorem 3.2. Let A and Q be as in (2.1). Let Xs be the stabilizing solution of (1.1) and Ys be the
stabilizing solution of the dual equation Y+AY−1AT=Q (The existence of Ys is also guaranteed
by the argument leading to Theorem 2.1). Then

(a) The sequences {Ak}, {Qk} and {Pk} generated by Algorithm 3 are well-defined. Moreover,
Qk and Pk are complex symmetric;

(b) Qk converges to Xs quadratically, Ak converges to 0 quadratically, Q−Pk converges to Ys

quadratically, with

lim
k→∝

sup 2k
√
‖Qk−Xs ‖≤ (ρ(X−1

s A))2, lim
k→∝

sup 2k
√
‖Ak ‖≤ρ(X−1

s A),

lim
k→∝

sup 2k
√
‖Q−Pk−Ys ‖≤ (ρ(X−1

s A))2,

where ‖ ·‖ is any matrix norm.

Proof. (a) From (3.2), we can know that Tk =Ck+iDk for each k≥ 1, where Ck is Hermi-
tian matrix and Dk is positive definite Hermitian matrix. It follows from Theorem 2.3
(Bendixson’s theorem) that Tk is invertible.

Let Wk = Qk−Pk, where W0 = Q, k ≥ 0. Then Wk is nonsingular for each k ≥ 0 from
Lemma 3.1. The sequences {Ak}, {Qk} and {Pk} in Algorithm 3 are well-defined. Qk and
Pk are complex symmetric because Q is complex symmetric.

(b) Xs be the stabilizing solution of (1.1) if and only if

M0

[
I

Xs

]
= L0

[
I

Xs

]
X−1

s A. (3.4)
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We now define the sequences {Mk} and {Lk}, where

Mk =

[
Ak 0
Qk −I

]
, Lk =

[
−Pk I
AT

k 0

]
. (3.5)

Wk =Qk−Pk is nonsingular for each k≥0, we can define the following matrix

M̃k=

[
Ak(Qk−Pk)

−1 0
−AT

k (Qk−Pk)
−1 I

]
, L̃k=

[
I −Ak(Qk−Pk)

−1

0 AT
k (Qk−Pk)

−1

]
,

and we also know that M̃kLk= L̃kMk(k≥0). By computing L̃kLk and M̃k Mk (k≥0), gives

L̃kLk =

[
−(Pk+Ak(Qk−Pk)

−1AT
k ) I

AT
k (Qk−Pk)

−1AT
k 0

]

=

[
−Pk+1 I
AT

k+1 0

]
= Lk+1,

M̃kMk =

[
Ak(Qk−Pk)

−1Ak 0
Qk−AT

k (Qk−Pk)
−1Ak −I

]

=

[
Ak+1 0
Qk+1 −I

]
=Mk+1.

Premultiplying (3.4) with M̃0, and using M̃0L0 = L̃0M0, M1 = M̃0M0, L1 = L̃0L0, we get
that

M̃0M0

[
I

Xs

]
= M̃0L0

[
I

Xs

]
X−1

s A,

M1

[
I

Xs

]
= L̃0M0

[
I

Xs

]
X−1

s A= L̃0(L0

[
I

Xs

]
X−1

s A)X−1
s A

= L1

[
I

Xs

]
(X−1

s A)2.

So for each k≥0, we can know that

Mk

[
I

Xs

]
= Lk

[
I

Xs

]
(X−1

s A)2k
. (3.6)

Substituting Mk and Lk into (3.6) yields

Ak =(Xs−Pk)(X
−1
s A)2k

, Qk−Xs =AT
k (X

−1
s A)2k

. (3.7)
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Similarly we have

M̂0

[
I

Ys

]
= L̂0

[
I

Ys

]
Y−1

s AT,

where

M̂0=

[
AT 0
Q −I

]
, L̂0=

[
0 I
A 0

]
.

We also know that M0−λL0=

[
A −λI
Q−λAT −I

]
, so

[
A −λI
Q−λAT −I

][
I 0
−(−I)−1(Q−λAT) I

]
=

[
λ2 AT−λQ+A −λI
0 −I

]
.

Taking the determinant on the two sides we obtain

|M0−λL0|= |λ2 AT−λQ+A||− I|=(−1)n|λ2 AT−λQ+A|.

It follows that M0−λL0 has the same eigenvalues as λ2 AT−λQ+A. Similarly, M̂0−λL̂0

has the same eigenvalues as λ2 A−λQ+AT ((λ2AT−λQ+A)T =λ2 A−λQ+AT). Then
X−1

s A and Y−1
s AT have the same eigenvalues, and ρ(X−1

s A)=ρ(Y−1
s AT). For each k≥0,

we have

M̂k

[
I

Ys

]
= L̂k

[
I

Ys

]
(Y−1

s AT)2k
, (3.8)

where

M̂k =

[
AT

k 0

Q̂k −I

]
, L̂k=

[
−P̂k I
Ak 0

]
, P̂k=Q−Qk, Q̂k =Q−Pk.

Substituting M̂k and L̂k into (3.8) yields

AT
k =(Ys− P̂k)(Y

−1
s AT)2k

, Q̂k−Ys =Ak(Y
−1
s AT)2k

. (3.9)

It follows from (3.7)-(3.9) that

Qk−Xs =AT
k (X

−1
s A)2k

=(Ys− P̂k)(Y
−1
s AT)2k

(X−1
s A)2k

=(Qk−Xs+(Xs+Ys−Q))(Y−1
s AT)2k

(X−1
s A)2k

.

Consequently

(Qk−Xs)−(Qk−Xs)(Y
−1
s AT)2k

(X−1
s A)2k

=(Xs+Ys−Q)(Y−1
s AT)2k

(X−1
s A)2k

,

(Qk−Xs)(I−(Y−1
s AT)2k

(X−1
s A)2k

)=(Xs+Ys−Q)(Y−1
s AT)2k

(X−1
s A)2k

.
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It follows that

lim
k→∝

sup 2k
√
‖Qk−Xs ‖≤ρ(X−1

s A)ρ(Y−1
s AT)=(ρ(X−1

s A))2
<1.

So Qk converges to Xs quadratically. Since P̂k=Q−Qk and {Qk} is bounded, then {P̂k} is
bounded. By (3.9), we know

lim
k→∝

sup 2k
√
‖Ak ‖≤ρ(Y−1

s AT)=ρ(X−1
s A)<1.

Thus Ak converges to 0 quadratically. By Q̂k−Ys=Ak(Y
−1
s AT)2k

in (3.9) and (3.8) we have

lim
k→∝

sup
2k
√
‖ Q̂k−Ys ‖= lim

k→∝

sup 2k
√
‖Q−Pk−Ys ‖≤ (ρ(X−1

s A))2
<1.

So Q−Pk converges to Ys quadratically.

The SPA is said to be structure-preserving since for each k≥ 0, Mk and Lk have the
structures given in (3.5), and the pencil Mk−λLk is T-symplectic.

4 Numerical experiments

In this section we present some numerical results to illustrate the convergence behavior
of the algorithms for computing the stabilizing solution Xs of the equation (1.1). We use
the relative residual (denoted as “RES”)

RES=
‖X+ATX−1A−Q‖

‖X ‖+‖A‖2‖X−1 ‖+‖Q‖
,

where ‖ ·‖ is the spectral norm.
In our implementations, all iterations are terminated when the current iterate satisfies

‖Xk+1−Xk‖<10−10. The numerical experiments were done in Matlab R2010a with respect
to the initial value (X0=Q), the numbers of iterations (denoted as “IT”), the CPU time in
seconds.

Example 4.1. Consider the matrix equation X+ATX−1A = Q1+iη I, where A ∈ Rn×n,
Q1=QT

1 ∈Rn×n, A and Q are generated randomly and η≥0. We will take n=16,32,64,128,
and η= 1

4 , 1
2 ,1, respectively. The numerical results are shown in Table 1, 2, 3.

Example 4.2. Consider the matrix equation X+ATX−1A=Q, where A and Q are given
by (2.1), and Q2+A2 > 0. Moreover, A1, Q1, A2 and Q2 are generated randomly. In this
example, we take n=16,32,64, and 128, respectively. The numerical results are shown in
Table 4.
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Table 1: The numerical results for example 1 (η= 1
4 ).

n
Method 16 32 64 128

IT 349 431 494 809
FPI CPU 1.152 3.436 11.445 76.475

RES 2.67e-14 4.20e-015 5.79e-16 6.74e-17

IT 199 238 245 331
MFPI CPU 0.569 0.573 4.109 14.475

RES 2.27e-14 4.16e-15 4.62e-16 6.31e-17

IT 11 20 23 32
SPA CPU 0.054 0.092 0.753 2.376

RES 2.08e-16 3.50e-16 1.86e-16 1.44e-17

Table 2: The numerical results for example 1 (η= 1
2 ).

n
Method 16 32 64 128

IT 141 228 280 348
FPI CPU 0.427 2.147 6.776 33.656

RES 3.32e-14 3.45e-015 5.48e-16 6.98e-17

IT 96 144 173 229
MFPI CPU 0.352 0.639 1.503 4.028

RES 3.11e-14 3.30e-15 5.15e-16 5.31e-17

IT 9 18 21 30
SPA CPU 0.041 0.111 0.648 2.104

RES 5.61e-17 5.54e-17 1.67e-17 1.25e-17

Numerical results in Tables 1−3 show that the effects of the FPI, MFPI and SPA meth-
ods become more effective with the increase value η, since the value of ρ(X−1

s A) is close
to 1 with small η. From Tables 1−4, we observe that the FPI, MFPI and SPA methods are
feasible to compute the stabilizing solution of (1.1). More specifically, it can also see that
CPU(SPA)< CPU(MFPI)<CPU(FPI), IT(SPA)<IT(MFPI)<IT(FPI), RES(SPA)<RES(MFPI)
<RES (MFPI). This indicates that the SPA is more efficient than the MFPI and FPI.

5 Conclusion

In this paper, we present the fixed-point iteration (FPI), the modified fixed-point iteration
(MFPI) and the structure-preserving algorithm (SPA) for computing the stabilizing solu-
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Table 3: The numerical results for example 1 (η=1).

n
Method 16 32 64 128

IT 134 202 230 275
FPI CPU 0.590 0.714 3.875 26.773

RES 4.76e-14 3.94e-014 4.28e-16 6.84e-17

IT 79 80 89 121
MFPI CPU 0.246 0.354 1.499 3.385

RES 2.86e-14 2.83e-14 3.85e-16 4.54e-17

IT 7 13 18 24
SPA CPU 0.024 0.070 0.519 2.072

RES 5.13e-17 2.37e-17 1.71e-17 1.32e-17

Table 4: The numerical results for example 2.

n
Method 16 32 64 128

IT 617 1000 1000 1000
FPI CPU 1.547 6.159 23.312 111.304

RES 8.26e-15 2.11e-15 5.42e-04 1.89e-05

IT 276 821 1000 1000
MFPI CPU 0.793 5.687 22.948 110.977

RES 3.36e-15 2.08e-15 1.12e-04 1.51e-05

IT 12 17 19 38
SPA CPU 0.052 0.261 15.930 28.086

RES 2.14e-15 1.27e-15 1.62e-14 1.07e-12

tion of (1.1). Different from the reference [1], numerical experiments are given to show
the feasibility and effectiveness of the FPI, MFPI and SPA methods.
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