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Abstract. The aim of this paper is to study the local convergence of the four order
iteration of Euler’s family for solving nonlinear operator equations. We get the optimal
radius of the local convergence ball of the method for operators satisfying the weak
third order generalized Lipschitz condition with L−average. We also show that the
local convergence of the method is determined by a period 2 orbit of the method itself
applied to a real function.
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1 Introduction

Let
f (x)=0, (1.1)

where f :D⊂X→Y is a nonlinear operator defined on a convex set D of a real or complex
Banach space X and valued in a same type space Y.

The method used often to solve a solution of (1.1) is Newton’s method
{

xn+1=Nn
f (x), x∈D, n≥1,

N f (x)= x− f ′(x)−1 f (x)
(1.2)

and its modifications with an approximation to f ′, or the modifications using higher
derivatives(such as Euler’s family, Halley’s family and etc.).

The analysis of the convergence of an iteration is always the one of fields mostly
interested in numerical nonlinear algebra. There are many papers concerning the semi-
local and the local convergence of iterations for solving nonlinear equations. Parts of the
latest papers are [1–6, 11].
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It is proved that for operators satisfying some kinds of Lipschitz condition with L−
average, the criteria to guarantee the semi-local convergence of each stationary iteration
of Euler’s family and of Halley’s family are the same, or, in other words, the criteria is
an invariant independent on iterations [12–14]. The Lipschitz condition with L−average
takes the classical Kantorovich-type condition [7] and Smale-type condition [8] as two
special cases.

What interesting is that status for the local convergence is different. For Newton’s
method (1.2) and Euler’s method







xn+1=En
f (x), x∈D, n≥1,

E f (x)= x−[1−
1

2
f ′(x)−1 f ′′(x) f ′(x)−1 f (x)] f ′(x)−1 f (x).

(1.3)

[10] proved that the criteria to guarantee the local convergence are linked closely to
the constructions of iterations and the dynamical properties of themselves applied to a
real or complex function. In details, under the second order Lipschitz condition with
L−average, [10] proved that the local convergence behavior of Newton’s method is de-
termined by a period 2 orbit‡ of itself applied to a real or complex function, and the
behavior of Euler’s method is determined by an repelling additional fixed point (we call
p∈X is an additional fixed point of E f (x), if E f (p)=p and f (p) 6=0) of itself applied to the
same function. If we write RN,RE as the optimal radii of Newton’s method and Euler’s
method, respectively, then RE<RN .

It is natural to ask how the local convergence behavior of iterations changes along
with the convergent order becomes higher. Based on that Newton’s method and Euler’s
method are the first two members of Euler’s family, in this paper, we consider the local
convergence behavior of the third member of Euler’s family, which is defined by

xn+1=Gn
f (x), x∈D, n≥1, (1.4)

where

G f (x)= x+
3

∑
i=1

1

i!
[ f−1

x ( f (x))](i)(− f (x))i,

and f−1
x is the local inverse of f at x. [9] shows us that (1.4) can be written in the following

formula:

G f (x)= x+∆1−
1

2
f ′(x)−1 f ′′(x)∆2

1− f ′(x)−1 f ′′(x)∆1∆2

−
1

3!
f ′(x)−1 f ′′′(x)∆3

1,

(1.5)

where
{

∆1=∆ f ,1=− f ′(x)−1 f (x),

∆2=∆ f ,2=E f (x)−N f (x).
(1.6)

‡{t1,t2}, a subset of real numbers, is called a period 2 orbit of a real function Iter(t) if t2 = Iter(t1) and
t1 = Iter(t2). Any period 2 orbit of the iterative function is called the period 2 orbit of the corresponding
iterative method.
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We will prove that if f satisfies the weak third order Lipschtiz condition with L−
average described in section 2, then the local convergence of (1.4) near a zero of (1.1)
is determined by a period 2 orbit of (1.4) applied to a real function defined in section 2.
Furthermore, if we denotes RG as the optimal radius of the local convergence ball of (1.4),
then RG <RE<RN.

The paper is organized as follows. In section 2, we will state the Basic Assumptions
and main results, and in section 3, we want to display some useful formulas that are
important for our analysis. In section 4 and section 5, we are going to study the local
convergence of (1.4) in the real field and in Banach spaces, respectively.

2 Assumptions and Results

Denote L(X,Y) as the space of linear operators defined on a convex set D of the Banach
space X and valued in the Banach space Y. Let L(t) be a real function with following

properties: L(t) is C2[0,r] with L(i)(0)>0 for i=1,2 and
L′′(t)

t >0 increases in (0,r), where
r is a positive number satisfying

∫ r

0
L(t)dt=1. (2.1)

Basic Assumptions:

• f (ζ)=0, where ζ∈O(ζ,r)⊂D and O(ζ,r)={x|‖x−ζ‖< r}.

• f (x) has the third Fréchet derivatives in O̊(ζ,r)={x|0<‖x−ζ‖< r}.

• f ′(ζ) exists and has inverse, and f (x) satisfies the weak third order Lipschitz con-
dition with L−average defined by



























limsup
x→ζ

‖ f ′(ζ)−1 f (i)(x)‖≤ L(i−1)(0), i=2,3,

‖ f ′(ζ)−1[ f ′′′(x)− f ′′′(ζ+θ(x−ζ))]‖≤
∫ ‖x−ζ‖

θ‖x−ζ‖
L′′(u)du,

∀θ∈ (0,1], ∀x∈O̊(ζ,r).

(2.2)

We say f satisfies the weak third order Lipschitz condition with L−average due to
that here we do not assume f has the second and the third Fréchet derivatives at the zero
point ζ.

Let

h(t)=

{

hr(t) t≥0,
−hr(−t) t<0.

(2.3)
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where

hr(t)=−t+
∫ t

0
(t−u)L(u)du. (2.4)

We have

Theorem 2.1. If f satisfies Basic Assumptions and RG is the smallest positive zero of Gh(t)+t,
then

1) ∀x ∈ O̊(ζ,RG), the iteration sequence {Gn
f (x)}n≥1, generated by (1.4) starting from x,

converges to ζ with the error estimates

‖Gn
f (x)−ζ‖≤q(x)4n−1‖x−ζ‖, n≥1, (2.5)

if Gn
f (x) 6= ζ for all n≥1, where

q(x)=
3

√

Gh(‖x−ζ‖)

−‖x−ζ‖
∈ (0,1). (2.6)

2) RG is the optimal radius of the local convergence ball of (1.4) with

Gh(RG)=−RG, Gh(−RG)=RG, (2.7a)

or

|Ghr
(RG)|=RG, (2.7b)

and
RG <RE<RN . (2.8)

Here RE and RN are the optimal radii of local convergence balls of Newton’s method and
Euler’s method for nonlinear operators satisfying the Basic Assumptions, respectively.

Remark 2.1. (2.7a) shows that {RG,−RG} is a period 2 orbit of iteration Gh. It determines
the local convergence of G f in Banach spaces for f satisfying the Basic Assumptions. (2.5)
and (2.7b) shows that RG is an non-attractive fixed point of |Gh|.

Remark 2.2. If f is asked to have the third Fréchet derivatives in O(ζ,r), then



















‖ f ′(ζ)−1 f (i)(ζ)‖≤ L(i−2)(0), i=2,3,

‖ f ′(ζ)−1[ f ′′′(x)− f ′′′(ζ+θ(x−ζ))]‖≤
∫ ‖x−ζ‖

θ‖x−ζ‖
L′′(u)du,

∀θ∈ [0,1], ∀x∈O(ζ,r).

is used instead of (2.2) , and Theorem 2.1 is still true except that RG is optimal .
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3 Basic formulas

In this section, we want to display three basic formulas that are important for the proof
of Theorem 2.1.

Suppose N f (x),E f (x) and G f (x) exist for some x 6= ζ, where x∈ D, then by Taylor’s

expansion, we have for any τ∈ (0,1] and τx,ζ+τ(x−ζ)∈O̊(ζ,r)

ζ−N f (x)= ζ−x−∆1

= ζ−τx+ f ′(x)−1 f (τx)− f ′(x)−1
∫ 1

0
θ f ′′(τx+θ(x−τx)dθ(x−τx)

2, (3.1)

ζ−E f (x)= ζ−x−∆1−∆2

= ζ−τx+ f ′(x)−1 f (τx)+ f ′(x)−1[− f (τx)+ f (x)+ f ′(x)(τx−x)+
1

2
f ′′(x)(τx−x)2]

−
1

2
f ′(x)−1 f ′′(x)

[

τx−x+ f ′(x)−1 f (x)
][

τx−x− f ′(x)−1 f (x)
]

= ζ−τx+ f ′(x)−1 f (τx)+
1

2
f ′(x)−1 f ′′(x) f ′(x)−1[2 f (x)− f (τx)] f

′(x)−1 f (τx)

+ f ′(x)−1
∫ 1

0
θ[ f ′′(x)− f ′′(τx+θ(x−τx)]dθ(x−τx)

2

+
1

2
f ′(x)−1 f ′′(x) f ′(x)−1

∫ 1

0
θ f ′′(τx+θ(x−τx)dθ(x−τx)

2

·
[

2− f ′(x)−1
∫ 1

0
θ f ′′(τx+θ(x−τx)dθ(x−τx)

]

(τx−x), (3.2)

G f (x)−ζ= τx−ζ− f ′(x)−1 f (τx)

+ f ′(x)−1[− f (x)− f ′(x)(τx−x)−
1

2
f ′′(x)(x−τx)

2]

+ f ′(x)−1 f ′′(x)[(τx−x)2−∆2
1−2∆1∆2]−

1

3!
f ′(x)−1 f ′′′(x)∆3

1

= ζ−τx+ f ′(x)−1 f (τx)+ I f (x,τ)+ I I f (x,τ)+ I I I f (x,τ), (3.3)

where

I f (x,τ)= f ′(x)−1
[

∫ 1

0

θ2

2
f ′′′(τx+θ(x−τx))dθ(τx−x)3+

1

3!
f ′′′(x)(x−τx)

3
]

= f ′(x)−1
∫ 1

0

θ2

2

[

f ′′′(x)− f ′′′(τx+θ(x−τx))
]

dθ(x−τx)
3, (3.4a)

I I f (x,τ)=
1

2
f ′(x)−1 f ′′(x)[(τx−x)2−∆2

1−2∆1∆2]

=
1

2
f ′(x)−1 f ′′(x)[(τx−N f (x))2+2(τx−E f (x))∆1], (3.4b)

I I I f (x,τ)=
1

3!
f ′′′(x)

[

(τx−x)3−∆3
1

]
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=
1

3!
f ′′′(x)(τx−N f (x))

[

(τx−N f (x))4+3(τx−x)∆1

]

. (3.4c)

Here, in (3.2) and (3.3), operations of vectors linked with higher order derivatives used
in [9] are adopted.

4 The convergence of Gn
h(t)(n≥1)

It can be verified that

Lemma 4.1. All the − 1
h′(t)

>0,h′′(t)>0 and h′′′(t)>0 increase on [0,r), and

h(i)(t)=(−1)i+1h(i)(−t), −r≤ t<0, i=0,1,2,3,4. (4.1)

We need following lemmas.

Lemma 4.2. Let RG =min{u> 0|Gh(u)+u= 0}, and RE and RN be the optimal radii of the
local convergence ball of Eh and of Nh, respectively, then RE and RN are the smallest positive reals
satisfying†

−
1

2

h′′(t)h(t)

h′(t)

∣

∣

∣

t=RE

=1,
h(t)

th′(t)

∣

∣

∣

t=RN

=2, (4.2)

and RG <RE<RN .

Proof. By almost the same deduction procedure used in [10], we have that RE and RN,
the optimal radii of the local convergence balls of En

h (t) and Nn
h (t), respectively, are the

smallest positive reals satisfying (4.2), RE<RN and

−t< t−
h(t)

h′(t)
<0, ∀t∈ (0,RE).

Following this inequality and

−
h′′(t)

h′(t)
∆h,2

∣

∣

∣

t=RG

=2
(h′′(t)h(t)

2h2(t)

)2∣
∣

∣

t=RG

=2,

we have

(Gh(t)+t)
∣

∣

∣

t=RE

=
(

2t−
h(t)

h′(t)
∆h,1∆h,2−

h′′′(t)

3!h′(t)∆3
h,1

)
∣

∣

∣

t=RE

=
[

2
(

t−
h(t)

h′(t)

)

−
h′′′(t)

3!h′(t)
∆3

h,1

]∣

∣

∣

t=RE

<0,

which, by combining with [Gh(t)+t]′+|t=0=1, and [Gh(t)+t]|t=0+ =0, deduces that there
is a positive zero of Gh(t)+t in (0,RE). Consequently RG exists with RG < RE and the
proof is completed.

†RN and RE satisfying (4.2) were first defined in [10].
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Lemma 4.3. We have

i) RG, defined in Lemma 4.2, is the unique zero of Gh(t)+t in (0,RE).

ii) ∀|t|∈ (0,RG), hold
sgn(t)Gh(t)<0, and |Gh(t)|< |t|. (4.3)

iii) Let q(t)=
3

√

Gh(t)

−t
for 0< t<RG. Then

{

q(t)=q(|t|)∈ (0,1),

|Gh(t)|= |Gh(|t|)|= |Ghr
(|t|)|,

∀|t|∈ (0,RG). (4.4)

iv) Moreover,
{

Gh(RG)=−RG, Gh(−RG)=RG,

|Ghr
(RG)|=RG

(4.5)

Proof. If h′(t) 6=0 for some t∈ (0,r), denote



































DN, h=−
1

h′(t)

∫ 1

0
θh′′(θt)dθ,

DE, h=−
1

h′(t)

∫ 1

0

θ2

2
h′′′(θt)dθ

+
1

2

h′′(t)

h′(t)2

∫ 1

0
θh′′(θt)dθ

[

2−
∫ 1

0
θ

h′′(θt)

h′(t)
dθt

]

.

(4.6)

By Lemma 4.1, we have

{

DN, h(t)=−DN, h(−t)>0,

DE, h(t)=DE, h(−t)>0,
∀t∈ (0,RE). (4.7)

It can be verified that DN, h(t) and DE, h(t) increase in (0,RE). Let







































Q1(t)=
1

h′(t)

∫ 1

0

θ2

2
·
h′′′(t)−h′′′(0)

t
dθ,

Q2(t)=
h′′(t)

2h′(t)

[

D2
N, h(t)+2DE, h

(

1−

∫ 1
0 θh′′(θt)dθ

h′(t)
t
)]

,

Q3(t)=
h′′′(t)

3!h′(t)
DN, h(t)

[

D4
N, h(t)t

2+3
(

1−

∫ 1
0

θh′′(θt)dθ

h′(t)
t
)]

.

(4.8)

Then −Qi(t) is positive and increases in (0,RG) for each i= 1,2,3 from the properties of

the function L definition in section 2, Lemma 4.1 and (4.7). Since h
(i)
+ (0) and h(i)(0) exist
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for i=2,3, it can be checked easily that (3.1)−(3.4) still hold when X=Y=D are the real

field and f =h. In this case, h
(i)
+ (0) and h(i)(0) are used when τ=0. In other words,

Gh(t)= Ih(t,0)+ I Ih(t,0)+ I I Ih(t,0),

Ih(t,0)=Q1(t)t
4, I Ih(,0)=Q2(t)t

4, I I Ih(t,0)=Q3(t)t
4. (4.9)

It follows that
Gh(t)

−t
=−[Q1(t)+Q2(t)+Q3(t)]t

3
>0 (4.10)

increases in (0,RE). Therefore, by Lemma 4.2, RG is the unique zero of Gh(t)+t in (0,RE),

or equivalently, is the unique solution of
Gh(t)

−t
=1 in (0,RE), which proves i) and deduces











0<q(t)=
3

√

Gh(t)

−t
<1, ∀t∈ (0,RG),

Gh(RG)=−RG.

(4.11)

Since

Q1(t)=−Q1(−t), Q2(t)=−Q2(−t), Q3(t)=−Q3(−t), ∀t∈ (0,RG) (4.12)

is true by Lemma 4.1, holds

Gh(t)=−Gh(−t), and q(t)=q(−t), ∀t∈ (0,RG). (4.13)

Then, ii) and iii), or (4.3) and (4.4), follow from (4.10)–(4.13), and iv), or (4.5), follows
from ii) and iii), respectively. The proof is completed.

By the lemmas above, we can get

Proposition 4.1. For any |t|∈ (0,RG), {Gn
h (t)}n≥1 converges to 0 with error estimates

∣

∣

∣
Gn

h (t)
∣

∣

∣
<q(t)4n−1|t|, n≥1, (4.14)

where RG and q(t) are defined in Lemma 4.3. Also, RG is the radius of the local conver-
gence ball of Gh(t) (or equivalently, a non-attractive fixed point of |Ghr

(t)|), and {RG,−RG}
is a period 2 orbit of Gh(t).

Proof. It is obviously that (4.14) is true for n=0. Suppose (4.14) is true for n= k, then by
(4.12), for any 0< |t|<RG , hold |Gk

h(t)|< |t| and

|Gk+1
h (t)|= |Q1(G

k
h(t))+Q2(G

k
h(t))+Q3(G

k
h(t))|(G

k
h(t))

4

=−
(

Q1(|G
k
h(t)|)+Q2(|G

k
h(t)|)+Q3(|G

k
h(t)|)

)

(Gk
h(t))

4

≤|Q1(t)+Q2(t)+Q3(t)|q(t)
4k+1−4t4

=q(t)4k+1−1|t|,
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that is to say, (4.14) is still true for n= k+1. (4.14) is then proved by induction method.
Following (4.5) in Lemma 4.3, RG, a fixed point of |Ghr

(t)|, is the radius of the local
convergence ball of Gh(t), and {RG,−RG} is a period 2 orbit of Gh(t). (4.4) in lemma 4.3
and (4.14) show us also that RG is a non-attractive fixed point of |Ghr

(t)|, which completes
the proof.

Remark 4.1. Proposition 4.1 shows that the local convergence of Gh(t) is determined by
its period 2 orbit nearest to 0.

Remark 4.2. By Lemma 4.3, (4.14) is equivalent to
∣

∣

∣
Gn

h (|t|)
∣

∣

∣
<q(|t|)4n−1|t|, ∀|t|∈ (0,RG), n≥0.

Remark 4.3. Let tn =Gn
h (t0)(n≥1), then for all |t0|∈ (0,RG),

|tn+1|< |tn|,tntn+1<0. n≥0,

or
{

t1< t3< ···< t2k+1< ···<0< ···< t2k+2< ···< t2< t0, 0< t0<RG,
t1> t3> ···> t2k+1> ···>0> ···> t2k+2> ···> t2> t0, −RG < t0<0

follows from (4.3).

5 The convergence of Gn
f (x)(n≥1)

We need the following lemmas.

Lemma 5.1. If f satisfies (2.2) , then ∀x∈O̊(ζ,r),

‖ f ′(ζ)−1
[

f ′′(x)− f ′′(ζ+θ(x−ζ))
]

‖≤
∫ ‖x−ζ‖

θ‖x−ζ‖
L′(u)du (5.1a)

holds for all 0< θ≤1 and

‖ f ′(ζ)−1
[

f ′(x)− f ′(ζ+θ(x−ζ))
]

‖≤
∫ ‖x−ζ‖

θ‖x−ζ‖
L(u)du (5.1b)

holds for all 0≤ θ≤1

Proof. Since for all x∈O̊(ζ,r) and all 0< θ≤1, there is

f ′′(x)− f ′′(ζ+θ(x−ζ))=
∫ 1

0
f ′′′(ζ+θ(x−ζ)+µ(1−θ)(x−ζ))dµ(1−θ)(x−ζ).

By (2.2) in Basic Assumptions,

‖ f ′(ζ)−1
[

f ′′(x)− f ′′(ζ+θ(x−ζ))
]

‖
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≤
∫ 1

0
‖ f ′(ζ)−1

[

f ′′′(ζ+θ(x−ζ)+µ(1−θ)(x−ζ))− f ′′′(τx)
]

‖dµ(1−θ)‖x−ζ‖

+(1−θ)‖ f ′′′(τx)‖‖x−ζ‖

≤
∫ 1

0

∫ (θ+µ(1−θ))‖x−ζ‖

τ‖x−ζ‖
L′′(u)dudµ(1−θ)‖x−ζ‖+(1−θ)‖ f ′′′ (τx)‖‖x−ζ‖

≤
∫ 1

0

∫ (θ+µ(1−θ))‖x−ζ‖

0
L′′(u)dudµ(1−θ)‖x−ζ‖+(1−θ)‖ f ′′′ (τx)‖‖x−ζ‖

holds for any 0<τ<1. Letting τ→0+, we have

‖ f ′(ζ)−1
[

f ′′(x)− f ′′(ζ+θ(x−ζ))
]

‖

≤
∫ 1

0

∫ (θ+µ(1−θ))‖x−ζ‖

0
L′′(u)dudµ(1−θ)‖x−ζ‖+(1−θ)‖L′(0)‖‖x−ζ‖

=
∫ 1

0
L′(θ+µ(1−θ))‖x−ζ‖)dµ(1−θ)‖x−ζ‖

=
∫ ‖x−ζ‖

θ‖x−ζ‖
L′(u)du.

(5.1a) is proved. (5.1b) follows from (5.1a) by the similar method, which completes the
proof.

Lemma 5.2. If f satisfies (2.2) , then ∀x∈O̊(ζ,RE), where RE is defined in Lemma 4.2, we have

‖ f ′(ζ)−1 f ′′(x)‖≤h′′(‖x−ζ‖), (5.2)

and f ′(x) is conversable with

‖ f ′(x)−1 f ′(ζ)‖≤−
1

h′(‖x−ζ‖)
, and ‖ f ′(x)−1 f (x)‖≤

h(‖x−ζ‖)

h′(‖x−ζ‖)
. (5.3)

Proof. For any x∈O̊(ζ,RE) and 0< θ<1, we have by (5.1a)

‖ f ′(ζ)−1 f ′′(x)‖≤‖ f ′(ζ)−1[ f ′′(x)− f ′′(ζ+θ(x−ζ))]‖+‖ f ′(ζ)−1 f ′′(ζ+θ(x−ζ))‖

≤
∫ ‖x−ζ‖

θ‖x−ζ‖
L′(u)du+‖ f ′(ζ)−1 f ′′(ζ+θ(x−ζ))‖

≤
∫ ‖x−ζ‖

0
L′(u)du+‖ f ′(ζ)−1 f ′′(ζ+θ(x−ζ))‖.

Letting θ→0+, holds

‖ f ′(ζ)−1 f ′′(x)‖≤
∫ ‖x−ζ‖

0
L′(u)du+L(0)= L(‖x−ζ‖)=h′′(‖x−ζ‖)



Z. D. Huang / J. Math. Study, 48 (2015), pp. 79-92 89

from the definition of the function h. That is to say (5.2) is true.
For any x∈O(ζ,RE) and θx = ζ+θ(x−ζ) with 0< θ<1, we have by (5.1b) and (5.2)

‖ f ′(ζ)−1 f ′(x)− I‖

≤‖ f ′(ζ)−1[ f ′(x)− f ′(θx)]‖+‖ f ′(ζ)−1[ f ′(θx)− f ′(ζ)]‖

≤‖
∫ 1

0
f ′(ζ)−1 f ′′(θx+τ(x−θx))dτ(x−ζ)‖+‖ f ′(ζ)−1[ f ′(θx)− f ′(ζ)]‖

≤
∫ 1

0
h′′((θ+τ−θτ)‖x−ζ‖)dτ‖x−ζ‖+‖ f ′ (ζ)−1[ f ′(θx)− f ′(ζ)]‖.

Letting θ→0+, it follows

‖ f ′(ζ)−1 f ′(x)− I‖≤
∫ 1

0
h′′(τ‖x−ζ‖)dτ‖x−ζ‖=h′ (τ‖x−ζ‖)+1.

The inequality above and Banach Lemma derive that f ′(ζ)−1 f ′(x) or f ′(x) inverses and
the first part of (5.3) holds. Since for any τx = ζ+τ(x−ζ) with 0<τ<1

‖ f ′(x)−1[ f (τx)− f (x)]‖

≤‖I‖+
∫ 1

0
(1−θ)‖ f ′(x)−1 f ′′(x+θ(τx−x))‖dθ‖τx−x‖2

≤1+
∫ 1

0
(1−θ)‖ f ′(x)−1 f ′(ζ)‖‖ f ′(ζ)−1 f ′′(x+θ(τx−x))‖dθ‖τx−x‖2

≤1−
∫ 1

0
(1−θ)

h′′((1−θ+θτ)‖x−ζ‖)

h′(‖x−ζ‖)
dθ‖τx−x‖2

follows from (5.2) and the first part of (5.3), letting τ→0+ above we have

‖ f ′(x)−1[ f (ζ)− f (x)]‖≤1−
∫ 1

0
(1−θ)

h′′((1−θ)‖x−ζ‖)

h′(‖x−ζ‖)
dθ‖ζ−x‖2 .

Therefore,
‖ f ′(x)−1 f (x)‖=‖ f ′(x)−1[ f (ζ)− f (x)]‖

≤1−
∫ 1

0
(1−θ)

h′′((1−θ)‖x−ζ‖)

h′(‖x−ζ‖)
dθ‖ζ−x‖2

=−
h(ζ)−h(‖ζ−x‖)

h′(‖ζ−x‖)
=

h(‖ζ−x‖)

h′(‖ζ−x‖)

deduces the second part of (5.3). The proof is completed.

Proof of Theorem 2.1. By (3.1), (3.2) and Lemma 5.1, using almost the same proce-
dure in [10], it is very easy for us to know that RN ,RE defined in Lemma 4.2, or (4.2), are
still the optimal radii of local convergence balls of Newton’s method and Euler’s method
for operators f satisfying (2.2) , respectively.
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Following Lemma 4.2 and Lemma 4.3, RG exits and (2.7a) and (2.8) holds. From (3.1)
and (4.6), we have for each x∈O̊(ζ,RG)

‖ζ−N f (x)‖≤‖ζ−τx+ f ′(x)−1 f (τx)‖

+
∫ 1

0
θ‖ f ′(x)−1 f ′(ζ)‖‖ f ′(ζ)−1 f ′′(τx+θ(x−τx)‖dθ‖x−τx‖

2

≤‖ζ−τx+ f ′(x)−1 f (τx)‖−
∫ 1

0
θ

h′′((θ+τ−θτ)‖x−ζ‖)

h′(‖x−ζ‖)
dθ‖x−τx‖

2

for any 0<τ<1 by Lemma 5.2. Letting τ→0+ above, it follows

‖ζ−N f (x)‖ ≤−
∫ 1

0
θ

h′′((θ)‖x−ζ‖)

h′(‖x−ζ‖)
dθ‖x−ζ‖2

= DE, h(‖x−ζ‖)‖x−ζ‖3 , ∀x∈O̊(ζ,RG). (5.4)

Similarly, we have

‖ζ−E f (x)‖≤DE, h(‖x−ζ‖)‖x−ζ‖3 , ∀x∈O̊(ζ,RG) (5.5)

from (3.2) and (4.6), and



























limsup
τ→0+

‖I f (x,τ)‖≤|Ih(‖x−ζ‖)|,

limsup
τ→0+

‖I I f (x,τ)‖≤|I Ih(‖x−ζ‖)|,

limsup
τ→0+

‖I I I f (x,τ)‖≤|I I Ih(‖x−ζ‖)|,

∀x∈O̊(ζ,RG) (5.6)

from (3.4) and (4.8), (4.9) and (4.12), respectively.

Since from (3.3), for any x∈O̊(ζ,RG) and any 0<τ<1 holds

‖G f (x)−ζ‖≤‖ζ−τx+ f ′(x)−1 f (τx)‖+‖I f (x,τ)‖+‖I I f (x,τ)‖+‖I I I f (x,τ)‖.

Letting τ→0+, we have

‖G f (x)−ζ‖≤|Ih(‖x−ζ‖,0)|+|I Ih(‖x−ζ‖,0)|+|I I Ih(‖x−ζ‖,0)|

=−
(

Q1(‖x−ζ‖)+Q2(‖x−ζ‖)+Q3(‖x−ζ‖)
)

‖x−ζ‖4

=−Gh(‖x−ζ‖).

(5.7)

from (4.12) and (5.4), (5.5) and (5.6).

Then induction method and Lemma 4.3 derive

‖Gn
f (x)−ζ‖≤ (−1)nGn

h ((−1)n−1‖x−ζ‖)= |Gn
h (‖x−ζ‖)|, n≥1 (5.8)



Z. D. Huang / J. Math. Study, 48 (2015), pp. 79-92 91

can be proved for all x∈ O̊(ζ,RG) if Gn
f (x) 6= ζ for all n≥ 1. Thus, following Proposition

4.1, {Gn
f (x)}n≥1 initialed from any x∈O̊(ζ,RG) converges to ζ and (2.5) holds if Gn

f (x) 6=ζ

for all n≥1.

Since h(t) satisfies the Basic Assumptions when ζ=0 and X=Y are real fields, RG, as
the radius of the local convergence ball by Proposition 4.1, is the optimal value of radii of
the local convergence ball of G f (x) for any f satisfies the Basic Assumptions. The proof
is completed. �

6 Conclusion

In this paper, the optimal local convergence radius of the four order iteration (1.4) of Eu-
ler’s family is determined for nonlinear operators satisfying (2.2), the weak third order
Lipschitz condition with L−average. Since this optimal radius is the absolute value of
real numbers appeared in the period 2 orbit nearest to 0 of the method itself applied to
the function defined by (2.3), we can say the local convergence of the method, which
is essentially a fixed point problem, is determined by one of the period 2 orbits of the
method itself applied to the function. It is just like the result for Newton’s method ob-
tained in [10]. It is expected that the local convergence of each method in the family with
even number order is determined by one of period 2 orbits of the method itself applied
to a similar function under mild conditions.
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