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Explicit Time-stepping for Moving Meshes
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Abstract. In order to move the nodes in a moving mesh method a time-stepping scheme
is required which is ideally explicit and non-tangling (non-overtaking in one dimen-
sion (1-D)). Such a scheme is discussed in this paper, together with its drawbacks, and
illustrated in 1-D in the context of a velocity-based Lagrangian conservation method
applied to first order and second order examples which exhibit a regime change after
node compression. An implementation in multidimensions is also described in some
detail.
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1 Adaptive moving meshes

Moving mesh methods are an alternative (or addition) to fixed mesh adaptive methods
in which a given number of mesh points are relocated at each time step (also known as r-
adaptivity). Relocation may be based on a velocity generated from geometric or physical
principles, as in the GCL method [5] and methods based on conservation [1, 2], or on a
mapping from a reference space to physical space, as in MMPDEs [6, 8, 9] and Parabolic
Monge-Ampere [7] methods. Thus there is a requirement to advance the mesh in time
from a given velocity or map.

In numerical implementations the size of the time step is often governed by stability
considerations dependent on the numerical method used. A further challenge in advanc-
ing the mesh is the avoidance of node overtaking in 1-D or mesh tangling in 2-D. Thus
time steps are sought that are not only stable but also preserve the ordering of the nodal
positions in 1-D or the integrity of the mesh in higher dimensions.

For example, in one dimension, given a velocity Vn
j at a node Xn

j , (j=0,.. . , J), at time

level n, the explicit Euler time stepping scheme,

Xn+1
j =Xn

j +hVn
j , (1.1)
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where h is the time step, is often used to update the nodes Xn
j , (j = 0,.. ., J), but there

is no guarantee that the ordering of the nodes will be preserved. An obvious sufficient
a priori condition for preserving the ordering of the nodes is easily obtained from the
nodal velocities and the node spacing by restricting the time step h to the shortest time
that any node Xn

j takes to cross one half of either of the adjacent node spacings i.e.

h<
1

2
min

j

∣∣∣∣∣
∆Xm

j±1/2

∆Vk
j±1/2

∣∣∣∣∣

for all j=0,.. ., J, where ∆Xj±1/2 and ∆Vj±1/2 denote the differences in Xj and Vj across the
interval j±1/2, respectively. However, since nodes often move in concert this condition
is highly restrictive and usually far from necessary. At the other exteme, a necessary
time step for preserving the ordering of the nodes is obtained pragmatically by taking a
speculative time step and reducing it if any node overtaking has taken place, but this is a
cumbersome process and not conducive to theoretical analysis.

Implicit schemes fare better, but require more work per time step. For example, in [3]
a maximum principle is used in one dimension to ensure ordering of the nodes. However,
in this paper we shall only be concerned with explicit schemes for moving the nodes.

The layout of the paper is as follows. In the next section we introduce an explicit
order-preserving scheme in 1-D and discuss its analytic basis and local truncation error.
This is followed by an extension of the scheme using a higher order quadrature. In the
next section two evolution problems are described to which the schemes may be applied.
Numerical examples are given in Section 4 using the Lagrangian moving mesh finite
difference scheme of [11, 12]. Finally, in Section 5 the extension to multidimensions is
described in detail, with a summary in Section 6.

2 An explicit order-preserving scheme in 1-D

One way of achieving order-preservation of the nodes in 1-D is to focus on the differences
∆Xj+1/2 between the nodal positions Xj, Xj+1. Applying the explicit Euler scheme (1.1)
to ∆Xj+1/2

∆Xn+1
j+1/2 =∆Xn

j+1/2+h∆Vn
j+1/2 =∆Xn

j+1/2

(
1+h

∆Vn
n+1/2

∆Xn
j+1/2

)
, (2.1)

where the bracket in the final term has the status of an amplification factor. If the am-
plification factor becomes negative then the interval length ∆Xj+1/2 changes sign and
tangling occurs.

Suppose that the nodes are ordered at time level n so that ∆Xn
j+1/2 is positive for all

j. Then, if ∆Vn
j+1/2 is also positive for all j, the amplification factor in (2.1) is positive and

∆Xj+1/2 remains positive after a time step, thus preserving the ordering of the nodes.
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Similarly, in the case of the scheme

∆Xn+1
j+1/2 =∆Xn

j+1/2

(
1−h

∆Vn
j+1/2

∆Xn
j+1/2

)−1

(2.2)

it is clear that if ∆Xn
j+1/2 is positive and ∆Vn

j+1/2 is negative for all j then ∆Xn+1
j+1/2 is posi-

tive and the scheme again preserves the ordering of the nodes.

A time-stepping scheme which incorporates both of these properties (and coincides
with the explicit Euler scheme to first order) is

∆Xn+1
j+1/2=∆Xn

j+1/2 exp

(
h

∆Vn
j+1/2

∆Xn
j+1/2

)
, (2.3)

where the amplification factor is the exponential. Because the exponential is always pos-
itive the sign of ∆Xj+1/2 is unchanged in a time step regardless of the sign of ∆Vn

j+1/2,

thus preserving the ordering of the nodes.

Reconstruction of the nodal positions from the differences ∆Xn+1
j+1/2 is straightforward.

Given Xn+1
j at one point, Xn+1

0 say,

Xn+1
j =Xn+1

0 +
j−1

∑
k=0

∆Xn+1
j+1/2. (2.4)

The analytic basis of the scheme is as follows. Given that the equation being approxi-
mated is

dx

dt
=v(x,t), (2.5)

by writing the space derivatives of x and v as xξ and vξ (in terms of a fixed reference
coordinate ξ),

dxξ

dt
=vξ , or

dlogxξ

dt
=

vξ

xξ
. (2.6)

Integrating the second of (2.6) from t to t+h,

logxξ(t+h)−logxξ(t)= log

(
xξ(t+h)

xξ(t)

)
=
∫ t+h

t

vξ(τ)

xξ(τ)
dτ, (2.7)

so that

xξ(t+h)= xξ(t)exp

(∫ t+h

t

vξ(τ)

xξ(τ)
dτ

)
, (2.8)

in which xξ(t+h) has the same sign as xξ(t). It is this equation that is discretised in (2.3)
by a low order quadrature of the integral.
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The reconstruction (2.4) of the Xn+1
j from the ∆Xn+1

j is a discretisation of the integral

x(ξ,t)=
∫ ξ

ξ0

xξ ′ dξ′, (2.9)

at time t, given x at ξ= ξ0 say.

The scheme (2.3) also arises from numerically integrating (2.7), giving

log

(
∆Xn+1

j+1/2

∆Xn
j+1/2

)
=h

∆Vn
j+1/2

∆Xn
j+1/2

. (2.10)

2.1 Truncation and quadrature errors

The local truncation error (LTE) of the scheme (2.3) applied to the first of (2.6) is

T1=
1

h

{
xξ(t+h)−xξ (t)exp

(
hvξ(t)

xξ(t)

)}
.

Expanding in powers of h,

T1=
1

h

{
xξ(t)+hx′ξ (t)−xξ(t)

(
1+

hx′ξ (t)

xξ(t)

)}
+O(h), (2.11)

which is of order O(h), the same as for the explicit Euler scheme. Similarly, the LTE of
(2.10) is

T′
j =

1

h

{
log

(
xn+1

ξ

xn
ξ

)
−h

vn
ξ

xn
ξ

}
=

1

h

{
log

(
xn

ξ +hvn+1
ξ

xn
ξ

)
−h

vn
ξ

xn
ξ

}
(2.12)

which is also of order O(h).

2.1.1 Higher order quadrature

A higher order explicit order-preserving scheme in 1-D can be constructed using a Runge
Kutta (RK) approach to the second of (2.6), giving instead of (2.10)

log

(
∆Xn+1

j+1/2

∆Xn
j+1/2

)
=

h

2
(K1+K2)

n
j+1/2 (2.13)

where K1=∆V/∆X and K2 is ∆V/∆X evaluated at ∆X+hK1. The scheme corresponding
to (2.3) is then

∆Xn+1
j+1/2 =∆Xn

j+1/2 exp

(
h

2

(K1+K2)

∆X

)n

j+1/2

(2.14)
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which has the same monotonicity property as (2.3). However, the LTE of the scheme
(2.14) applied to the first of (2.6) is

T2=
1

h

{
xξ(t+h)−xξ(t)exp

(
h

2

(k1(t)+k2(t))

xξ(t)

)}
(2.15)

where k1(t)= x′ξ(t)/xξ(t) and k∗2(t) is x′ξ(t)/xξ(t) evaluated at xξ(t)+hx′ξ (t), leading to

1

h

{
xξ+hx′ξ+

1

2!
h2x′′ξ −xξ

(
1+

h

2xξ
{2x′ξ+hx′′ξ }+

1

2!
h2(x′ξ)

2

)}
+O(h2) (2.16)

which is only of O(h) (first order) even though the integral in (2.8) has been approximated
by a higher order integration scheme. Neverthless, the scheme (2.14) is a second order
scheme for the second of (2.6).

2.2 Effect of rounding error

In principle, any positive value of the time step h is allowed in the schemes (2.3) and
(2.14) when preserving the node ordering. However, when used with inexact arithmetic
this is no longer the case.

If ∆Xn
j+1/2 falls below the level of rounding error (as is likely when ∆Vn

j+1/2<0 so that

adjacent nodes approach one another), the positivity of ∆Xj+1/2 may not be maintained
in a time step due to the random nature of rounding error, ǫ say. To avoid this difficulty
a simple regularisation is to raise ∆Xn

j+1/2 in (2.3) or (2.14) above the level of rounding

error to (∆Xn
j+1/2+|ǫ|), thus converting (2.3) for example to

∆Xn+1
j+1/2 =(∆Xn

j+1/2+|ǫ|)exp

(
h

∆Vn
j+1/2

(∆Xn
j+1/2+|ǫ|)

)
. (2.17)

In practice this regularisation has an insignificant effect on the computations.

2.3 Use in conjunction with another equation

When used in conjunction with another equation, such as the PDE whose solution is
required, large values of h can generate unwanted numerical features. Although node
overtaking is avoided there is no guarantee that the nodal spacings remain smooth, thus
it is possible to generate oscillatory behaviour in the related equation as a knock-on effect.

Provided that ∆Xj and ∆Vj are smooth at time level n, the source of oscillatory be-

haviour in ∆Xj at time level (n+1) is the spatial variation of the factor eQ where Q is the
quadrature error in the approximation of the integral in (2.8). Although this quadrature
error is small it is not necessarily smooth and will be exaggerated by large time steps. The
resulting oscillations can be reduced by a post-processing of the ∆Xj’s by a a Laplacian
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smoother which filter out the oscillations without invalidating the monotonicity prop-
erty. For example, the filter

∆Xn+1
j =

1

4

(
∆Xn+1

j−1 +2∆Xn+1
j +∆Xn+1

j+1

)
(2.18)

supresses the sawtooth component of ∆Xn+1
j , giving a smoother nodal spacing. In effect

this smoother is a filter on the quadrature error.

3 Lagrangian conservation

A velocity-based method to which these schemes may be applied is the Lagrangian con-
servation method of [2,12] for a flux-driven mass-conserving PDE problem. The velocity
v(x,t) is provided in terms of a flux function, f (u,ux) say, of the solution u(x,t) by the
flux balance equation

[− f (u,ux)+uv]=0 (3.1)

where [·] denotes the jump in the argument across any two moving points in the domain.
The function f (u,ux) depends on t through its dependence on u(x,t) and ux(x,t). The
evolution of a general moving coordinate x̂(t) is determined by integrating

dx̂

dt
=v(x̂,t), (3.2)

and the solution u(x̂,t) (required to be positive) found from the Lagrangian form of the
conservation law, ∫ x̂2(t)

x̂1(t)
u(x,t)dx is constant in time, (3.3)

for any two arbitrary moving points x̂1(t), x̂2(t).
Given a zero net mass flux boundary condition on v (such that (− f (u,ux)+uv= 0),

then from (3.1) the velocity at a general moving point x̂(t) is

v(x̂,t)=
f (u,ux)

u

∣∣∣∣
x=x̂(t)

(3.4)

provided that u(x̂,t) 6=0.
Two instances of the flux function f (u,ux) occur in the following examples:

1. the well-known inviscid Burgers equation, for which the flux function is

f (u,ux)=
1

2
u2 (3.5)

and the Lagrangian velocity, from (3.4), is

v(x,t)=
1

2
u(x,t). (3.6)
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(Note that the velocity differs from the standard characteristics velocity v(x,t) =
u(x,t), for which u(x,t) remains constant in time). A significant feature of solutions
is the formation of a shock in finite time.

2. a porous medium equation [13], for which the flux function is

f (u,ux)=−u2ux (3.7)

and the velocity is v=−uux. Important features of the solution of this problem are
the existence of a waiting time before the boundary moves, and the infinite slope at
the boundary when movement takes place.

4 Numerical experiments

We now show the results of numerical experiments carried out on the inviscid Burgers
problem and porous medium problem described in the previous section using a finite
difference form of the Lagrangian conservation method [4, 11, 12] to move the nodes.

4.1 The finite difference Lagrangian conservation method

Within a timestep the algorithm is as follows:

1. Approximate the velocity v(x,t) using (3.4) by Vn
j = f (Un

j ,(Ux)n
j )/Un

j and an up-

wind discretisation of (Ux)n
j .

2. Advance the nodes Xn
j to the next time level n+1 by the timestepping scheme.

3. Determine the approximate solution Un+1
j at the next time level using an approxi-

mation to (3.3) as follows:

In the case of the inviscid Burgers equations approximate the integral (3.3) using
the first order upwind quadrature

(Xn+1
j −Xn+1

j−1 )Un+1
j =Cj (4.1)

where the Cj are constants (in time) prescribed by the initial data, at t0 say, in the
form

Cj=(X0
j −X0

j−1)U0
j .

In the case of the porous medium equation approximate the integral (3.3) by the
midpoint quadrature

(Xn+1
j+1 −Xn+1

j−1 )Un+1
j =C′

j, (4.2)

where the C′
j are constants (in time) prescribed from initial data by

C′
j =(X0

j+1−X0
j−1)U0

j .
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Figure 1: Time series of the evolution of the solution to the Inviscid Burgers Equation (flux fuunction (3.5))
with 61 nodes and timesteps h=0.01 at time intervals 0.05 from t=0 to t=3 using the Lagrangian conservation
method with (a) the time-stepping scheme (2.3) and (b) the time-stepping scheme (2.14).

4.1.1 The inviscid Burgers equation

In this example f (u)= 1
2 u2 and v= 1

2 u, from (3.4).
We take initial data u(x,0)= cos(πx/2) in |x|< 1 and boundary conditions u= v= 0

at x=−1 with u= 0 at the downwind boundary. Conservation holds both globally and
locally in this method.

Interest lies in the capacity of the method to follow the solution through the compres-
sion occurring in (0<x<1) (in which the intervals between the nodes become extremely
small) through to the formation of the shock (after which the method relies on local con-
servation) with the explicit order-preserving time-stepping schemes.

The scheme (2.17) takes the form

∆Xn+1
j+1/2=(∆Xn

j+1/2+|ǫ|)exp

(
h

2

∆Un

∆X+|ǫ|

)n

j+1/2

, (4.3)

while in the scheme (2.14) K1=
1
2 ∆U/∆X and K2 is 1

2 ∆U/∆X evaluated at ∆X+hK1. The
regularising parameter ǫ is at the level of rounding error.

The initial domain |x|≤1 is discretised by 61 equispaced nodes Xj, (j=0,.. ., J) and the
initial values of Uj at Xj are sampled directly from the initial condition at the nodes. The
time step is h=0.01.

We show results for the two schemes (2.3) and (2.14) in Figs. 1(a) and 1(b), respec-
tively. Each figure shows the evolution of the initial data from time t=0 to time t=5 at
intervals 0.5 (five times the time step h for clarity).

The main difference between the figures is the suppression of the oscillations that
occur in scheme (4.3) by the scheme (2.14) at the formation of the shock. The scheme not
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only copes well with the compression of the nodes as they approach the shock but also
provides a smooth transition to the post-shock behaviour.

We note the slight decay in amplitude of the wave at early times due to the low order
upwind approximation used for the integral (3.3).

The most striking thing about Figure 1 is the ease with which the scheme handles the
compression of the nodes as they approach the infinite slope and the smooth transition
from the waiting time regime to the moving boundary regime. A specimen grid history
is shown in Fig. 2.
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Figure 2: Grid history of the evolution of the solution to the Burgers’ equation problem with 21 nodes and
timesteps h=0.01 at all time intervals from t=0 to t=2 using the scheme (4.4).

4.1.2 The porous medium equation

In this example f (u)=−u2ux and v=−uux =− 1
2(u

2)x from (3.4).
We take initial data u(x,0)=cos(π/2)x in |x|<1 and zero net flux (and therefore mass

conserving) boundary conditions at x=±1. Conservation holds both globally and locally
in this method.

Interest lies in the capacity of the method to follow the solution during the waiting
time [10]) (in which the intervals between the nodes become extremely small) through
to the spontaneous movement of the boundary (which occurs when the slope becomes
infinite).

Again, the initial domain |x|≤1 is discretised by 61 equispaced nodes Xj, (j=0,.. . , J)
and the initial values of Uj at Xj are sampled directly from the initial condition at the
nodes. The time step is again h=0.01.

The scheme (2.17) takes the form

∆Xn+1
j+1/2=(∆Xn

j+1/2+|ǫ|)exp

(
−

h

2

∆(U2)x

∆X+|ǫ|

)n

j+1/2

(4.4)

while in the scheme (2.14) K1 =− 1
2 ∆(U2)x/∆X and K2 is − 1

2 ∆(U2)x/∆X evaluated at
∆X+hK1. Here ∆(U2)x is discretised as the barycentric average of the slopes ∆(U2)/∆X
in the adjacent intervals.
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We show results for the scheme (2.3) in Fig. 3. The figure shows the evolution of the
initial data from time t=0 to time t=3 at intervals 0.2. The results for the scheme (2.14)
are very similar.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

Figure 3: Time series of the evolution of the solution to the Porous Medium Equation (flux function (3.7)) with
61 nodes and timesteps h=0.01 at time intervals 0.2 from t=0 to t=3 using the scheme (4.4).

A specimen grid history is shown in Fig. 4 (on the right hand half of the domain), in
which the transition of the boundary point from waiting to movement is clearly seen.
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Figure 4: Grid history of the evolution of the solution to the porous medium equation problem with 21 nodes
(for the right hand half of the domain) for timesteps h=0.01 at all time intervals from t=0 to t=2 using the
scheme (4.4).

5 Multidimensions

We now discuss the extension of the procedure to multidimensions. As in the one-
dimensional case there are two stages to the approach. First, given the velocities of the
nodes of a multidimensional mesh, we can compute relative velocities along mesh edges
which can be used to compute new positive edge lengths using (2.3) or (2.14).
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Secondly, given the complete set of positive edge lengths, we would like to use them
to compute the nodal positions in such a way as to avoid mesh tangling. This aspect is
the multidimensional equivalent of (2.9). To prepare for the generalisation write equation
(2.9) as

Xj+1−Xj

∆Xj+1/2
=

Xj−Xj−1

∆Xj+1/2
(5.1)

where the interval lengths ∆Xj±1/2 are known but the nodal positions Xj are not. Note
that (5.1) is equivalent to equating the sum of the signed unit vectors in the two adjacent
intervals to zero. The system of equations (5.1) for all j is implicit but can be written as a
matrix equation where one value of Xj is prescribed for a unique solution. Equation (5.1)
can also be written in the form

Xj =
(∆Xj−1/2)

−1Xj−1+(∆Xj+1/2)
−1Xj+1

(∆Xj−1/2)−1+(∆Xj+1/2)−1
(5.2)

showing that Xj is a barycentric average of its neighbours.
An iterative form of (5.1) (using an iteration index p) is

X
p+1
j =X

p
j +φ

{
(∆Xj+1/2)

−1(Xj+1−Xj)
p−(∆Xj+1/2)

−1(Xj−Xj−1)
p
}

(5.3)

where the relaxation factor φ<
1
2 . Since the weights (∆Xj−1/2)

−1 are positive the node at

X
p+1
j always lies between the midpoints of the intervals adjacent to X

p
j .

Straightforward generalisations of (5.1) and (5.2) to multidimensions are

∑
jk

Xjk−Xj

∆Xjk
=0 (5.4)

and

Xj=
∑jk(∆Xjk)

−1Xjk

∑jk(∆Xjk)−1
(5.5)

where jk is the index of nodes Xjk neighbouring node Xj, the ∆Xjk being the known posi-
tive edge lengths joining Xj to Xjk. Note that equation (5.4) is equivalent to equating the
resultant of the unit vectors measured outwards from Xj along these edges to zero (which
is the crux of the procedure). Unlike the one-dimensional case there is no unique solution
to the system (5.4). Instead, we minimise a norm of the residual of (5.4). If the norm is
the l2 norm the minimiser is given by equation (5.5).

The implicit system of equations (5.4) for all j can be written as a matrix equation,
where at least one value of Xj is prescribed for a unique solution.

An iterative form of (5.5) (using an iteration index p) is

X
p+1
j =X

p
j +φ

∑jk(∆Xjk)
−1(Xjk−Xj)

p

∑jk(∆Xjk)−1
(5.6)
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(c f . (5.3)), where φ is a relaxation factor. It also has (5.4) as its limit (if it converges) and in

addition has the property that at each iteration the node at X
p+1
j lies in the convex hull of

the surrounding nodes scaled by the relaxation factor φ, thus enforcing non-tangling if φ

is sufficiently small. Taking φ≤1/2 so that X
p+1
j lies in the convex hull of the midpoints of

the edges through X
p
j is sufficient in most cases for non-tangling, although smaller values

of φ may be used in extreme cases.

6 Summary

In this paper we have discussed some explicit time-stepping strategies for moving mesh
methods.

The strategy suggested in this paper is a two-step approach which relies on interval
lengths in one dimension and edge lengths in multidimensions. The basic building brick
is a scheme which evolves lengths numerically in such a way as to keep them positive.
This is achieved by a scheme which uses an amplification factor in the form of an expo-
nential, which has the same order of accuracy as the explicit Euler scheme. The accuracy
of the scheme is increased by a higher order quadrature. The second step is to construct
a mesh from these positive lengths. In one dimension this is straightforward when the
position of one node is known, but in higher dimensions a special principle is required.
Generalising from one dimension we propose that the resultant of the unit vectors along
the edges emanating from a node be minimised in order to locate the node from the edge
lengths.

There are some drawbacks in the implementation of the scheme. Rounding errors
can upset the positivity of the amplification factor in the first step and, more seriously,
a lack of smoothness of the intervals or edge lengths can engender oscillations when
used in conjunction with the numerical approximation of another equation which may
invalidate schemes relying on a positive monitor function.

Numerical illustrations are shown for a first and second order problem, each of which
exhibits a compression followed by a regime change.
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