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1 Introduction

In this paper, we consider the following incompressible Navier-Stokes equations in R
3×

(0,T)










∂tu+(u·∇)u−∆u+∇p=0

∇·u=0,

u(x,0)=u0(x).

(1.1)

Where u=u(x,t) is the velocity field, p(x,t) is the scalar pressure and u0(x) with ∇·u0=0
in the sense of distribution is the initial velocity field.

It is well known that for u0(x)∈ L2(R3), (1.1) exist at least one weak solution that is
called Leray-Hopf weak solution. Nevertheless, the fundamental problem of the unique-
ness and regularity of such solutions is still open.

However, the solution regularity can been derived when certain growth conditions
are satisfied. This is known as a regularity criterion problem introduced in the celebrated
work of Serrin [1], and can be described as follows:

∗Corresponding author. Email address: zhangaqtc@126.com (H. Zhang)

http://www.global-sci.org/jms 396 c©2014 Global-Science Press



H. Zhang / J. Math. Study, 47 (2014), pp. 396-402 397

A weak solution u is regular if the growth condition

u∈Lp(0,T;Lq(R3));
2

p
+

3

q
=1, 3<q≤∞, (1.2)

holds true.
There is a large literature on improvement of the condition (1.2). It may be super-

fluous to recall all results. To go directly to the main points of the present paper, we
only review some known results which are closely related to our main result. Beirã da
Veiga [2] improved the condition (1.2) in terms of two velocity components

ũ∈Lp(0,T;Lq(R3));
2

p
+

3

q
=1, 3<q≤∞, (1.3)

where ũ=(u1,u2,0) is the horizontal velocity.
Very recently, Zhang [3] extended the condition (1.3) into BMO space in the marginal

case q=∞

ũ∈L2(0,T;BMO). (1.4)

Another interesting contribution of this problem is due to Beirão da Veiga [4] on the
regularity criterion with respect to the velocity gradient condition

∇u∈Lp(0,T;Lq(R3));
2

p
+

3

q
=2,

3

2
<q≤∞. (1.5)

Recently, based on the Littelewood-Paley decomposition to the equations(1.1), Dong and
Zhang [5] extended the regularity criterion via two components of velocity field in ho-
mogeneous Besov space

∇hũ∈L2(0,T;Ḃ0
∞,∞(R

3)); ∇hũ=(∂1ũ,∂2ũ). (1.6)

Penel and Pokorny [6] obtained an improved regularity result in Lp spaces

∂1u1,∂2u2∈Lp(0,T;Lq(R3));
2

p
+

3

q
=2,

3

2
<q≤∞. (1.7)

Dong and Chen [7] improved the condition (1.7) in Lorentz space, Morrey space and
multiplier space. Actually, the weak solution remains regular if the single velocity com-
ponent satisfies some conditions (see [8, 9, 16]).

The aim of this present paper is to extend the regularity criterion (1.6) and (1.7) in ho-
mogeneous Besov space in the marginal case. More precisely, we will prove the following
result.

Theorem 1.1. Suppose u0∈H3(R3) and ∇·u0=0 in the sense of distributions. Assume that u
is a Leray-Hopf weak solutions of (1.1) on (0,T). If u satisfies the following condition

∫ T

0

‖(∂1u1,∂2u2)‖Ḃ0
∞,∞

√

1+log(1+‖(∂1u1,∂2u2)‖Ḃ0
∞,∞

)
dt<∞, (1.8)

then the weak solution is regular on (0,T].



398 H. Zhang / J. Math. Study, 47 (2014), pp. 396-402

A very interesting consequence of (1.8) is the condition

∫ T

0
‖(∂1u1,∂2u2)‖Ḃ0

∞,∞
dt<∞, (1.9)

which is a refined improvement of the famous BKM criterion [11] to Navier-Stokes equa-
tions, and the same time is also an improvement of the condition (1.6).

Remark 1.1. Throughout the paper, C stands for a constant, and changes from line to
line; ‖.‖p denotes the norm of the Lebesgue space Lp.

2 Preliminaries

We first introduce the Littlewood-Paley decomposition and the definition of Besov spaces,
one may check [12, 13] for more details.

For f ∈S , the Schwartz class of rapidly decreasing functions, define the Fourier trans-
form

f̂ (ξ)=
1

(2π)
3
2

∫

R3
e−ix·ξ f (x)dx.

Choose two nonnegative radial functions χ,ϕ∈S(R3) supported respectively in B=
{

ξ∈R
3,|ξ|≤ 4

3

}

and C=
{

ξ∈R
3, 3

4 ≤|ξ|≤ 8
3

}

such that

χ(ξ)+∑
j≥0

ϕ(2−jξ)=1, ξ∈R
3.

We define the pseudo-differential operators

△−1 f =F−1
(

χ(ξ) f̂ (ξ)
)

, △j f =F−1
(

ϕ(2−jξ) f̂ (ξ)
)

, j≥0,

and set

Sj f =
j−1

∑
k=−1

△k f .

By telescoping the series, we thus have the following Littlewood-Paley decomposition

f =
∞

∑
j=−∞

△j f , f ∈L2(R3). (2.1)

The homogeneous Besov space Ḃs
p,q is defined by the semi-norm

Ḃs
p,q=

{

f ∈S ′(R3); ‖ f‖Ḃs
p,q
<∞

}

,
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where

‖ f‖Ḃs
p,q
=



















(
∞

∑
j=−∞

2jqs‖△j f (·)‖
q
p)

1
q , if q∈ [1,∞)

sup
j∈Z

2js‖△j f (·)‖p, if q=∞.
(2.2)

It is deserved to point out that Ḃs
2,2 is the homogenous Sobolev space Ḣ and has the

following imbedding

L∞(R3)⊂BMO⊂ Ḃ0
∞,∞(R

3),

where BMO is the space of the Bounded Mean Oscillation. BMO is the space defined as
a set for L1

locR
3 function f such that

‖ f‖2
BMO = sup

x∈R3

sup
x∈R

1

B(x,R)

∫

B(x,R)
| f (y)− f̃BR

(y)|dy<∞,

where f̃BR
denote for the average of f over all ball BR(x) in R

3.

3 Proof of Theorem 1.1

Before going to the proof, we recall the following two inequalities established in [14, 15]
respectively

‖ f ·∇ f‖r ≤C‖ f‖r‖∇ f‖BMo, (3.1)

for f ∈W1,r with ∇· f =0 and

‖ f‖BMO ≤C(1+‖ f‖Ḃ0
∞,∞

log
1
2 (1+‖ f‖Hs−1)), (3.2)

for f ∈Hs−1 with s> n
2 +1.

Remark 3.1. The idea of this proof is based on the method from [16, 17].

Taking the inner product of the i−th equation of (1.1) with |ui|
2ui, (i = 1,2,3) and

integrating by parts, we can show that

3

∑
i=1

(
1

4

d

dt
‖ui‖

4
4+3‖|ui|∇ui‖

2
2)≤3

3

∑
i=1

∫

R3
p|ui|

2∂iuidx. (3.3)

Here we have used the following equality, due to the free divergence condition

3

∑
i=1

∫

R3
(u·∇)ui|ui|

2uidx=0.
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Applying the inequalities (3.1) and (3.2), we have

∫

R3
p|ui|

2∂iuidx ≤ C‖p‖2‖∂iui‖BMO‖ui‖
2
4

≤ C‖∂iui‖BMO‖ui‖
4
4

≤ C(1+‖∂iui‖Ḃ0
∞,∞

log
1
2 (1+‖∇3u‖2))‖u‖4

4

≤ C(1+
‖(∂1u1,∂2u2)‖Ḃ0

∞,∞
√

1+log(1+‖(∂1u1,∂2u2)‖Ḃ0
∞,∞

)
log(1+‖∇3u‖2))‖u‖4

4. (3.4)

Here we have used the following relationship between p and u

‖p‖p ≤C‖u‖2
2p, p∈ (1,+∞).

Now, we take
y(t)= sup

t∈[T∗ ,T]

‖∇3u‖2,

then due to (3.4), we have

sup
t∈[T∗,T]

‖u(t)‖4
4 ≤C∗(1+y(t))Cǫ,

where ǫ is a small constant, such that

∫ T

T∗

‖(∂1u1,∂2u2)‖Ḃ0
∞,∞

√

1+log(1+‖(∂1u1,∂2u2)‖Ḃ0
∞,∞

)
dt<ǫ,

where C∗ is a positive constant depending on T∗.
Then, we do estimate for ‖∇u‖2.
Multiplying the first equation of (1.1) by −∆u, after integration by parts, we have

1

2

d

dt
‖∇u‖2

2+‖∆u‖2
2 =

∫

R3
(u·∇u)u·∆udx

≤ ‖u‖4‖∇u‖4‖∆u‖2

≤ C‖u‖8
4‖∇u‖2

2+C‖∆u‖2
2

≤ C‖u‖16
4 +C‖∇u‖4

2+C‖∆u‖2
2, (3.5)

where we have used the inequality ‖∇u‖4≤‖∇u‖
1
4
2 ‖∆u‖

3
4
2 .

Integrating (3.5)on [T∗,t], we have

sup
t∈[T∗,T]

‖∇u(t)‖2
2 ≤C(1+y(t))4Cǫ+C. (3.6)
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Applying ∇3 to the first equation of (1.1), then taking L2 inner product of the resulting
equation with ∇3, using integration by parts, we obtain

1

2

d

dt
‖∇3u‖2

2+‖∇4u‖2
2 = −

∫

R3
∇3[(u·∇)u]∇3udx

= −
∫

R3
[∇3(u·∇u)−(u·∇)∇3u]∇3udx

≤ ‖∇3(u·∇u)−(u·∇)∇3u‖2‖∇
3u‖2

≤ C‖∇3u‖4‖∇u‖4‖∇
3u‖2

≤ C‖∇3u‖
5
4
2 ‖∇

4u‖
3
4
2 ‖∇u‖

1
4
2 ‖∇

2u‖
3
4
2

≤ C‖∇3u‖
5
4
2 ‖∇

4u‖2‖∇u‖
3
4
2

≤ C‖∇3u‖
1
4
2 ‖∇

4u‖
5
3
2 ‖∇u‖

13
12
2

≤ C‖∇3u‖
3
2
2 ‖∇u‖

13
2

2 +C‖∇4u‖2
2, (3.7)

where we used the following Gagliardo-Nirenberg inequality:

‖∇2u‖2≤C‖∇u‖
2
3
2 ‖∇

4u‖
1
3
2 ,

and

‖∇3u‖2≤C‖∇u‖
1
3
2 ‖∇

4u‖
2
3
2 .

It should be clear to readers that applying Gronwall’s inequality to (3.7) and taking
(3.6) into account, we can obtain y(t)≤C. This completes the proof of Theorem 1.1.
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