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Abstract. In this paper, a generalization of q-Gamma operators based on the concept
of q-integer is introduced. We investigate the moments and central moments of the
operators by computation, obtain a local approximation theorem and get the pointwise
convergence rate theorem and also obtain a weighted approximation theorem. Finally,
a Voronovskaya type asymptotic formula was given.
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1 Introduction

It is well known that the Gamma operators are given by

Gn( f ;x)=
1

xnΓ(n)

∫ ∞

0
f (t/n)tn−1e−t/xdt, x∈ [0,∞). (1.1)

In 2005, Zeng [9] obtained the approximation properties of Gn defined above, suppos-
ing f satisfies exponential growth condition. He studied the approximation properties
to the locally bounded functions and the absolutely continuous functions and obtained
some good properties.

Since the application of q-calculus in approximation theory is an active field, many re-
searchers have performed studies in it, we mention some of them [3,5–8], these motivate
us to introduce the q analogue of this kind of Gamma operators.
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Firstly, we recall some concepts of q-calculus. All of the results can be found in [4].
For any fixed real number 0<q≤1 and each nonnegative integer k, we denote q-integers
by [k]q, where

[k]q =

{

1−qk

1−q , q 6=1;

k, q=1.

Also q-factorial and q-binomial coefficients are defined as follows:

[k]q !=

{

[k]q [k−1]q ...[1]q, k=1,2,...;
1, k=0,

and
[

n
k

]

q

=
[n]q!

[k]q ![n−k]q !
, (n≥ k≥0).

The q-improper integrals are defined as

∫ ∞/A

0
f (x)dqx=(1−q)

∞

∑
−∞

f

(

qn

A

)

qn

A
, A>0, (1.2)

provided the sums converge absolutely.

The q-exponential function Eq(x) is given as

Eq(x)=
∞

∑
k=0

qk(k−1)/2 xk

[k]q !
=(1+(1−q)x)∞

q , |q|<1,

where (1−x)∞
q =∏

∞
j=0(1−qjx).

The q-Gamma integral is defined as

Γq(t)=
∫ ∞/A

0
xt−1Eq(−qx)dqx, t>0, (1.3)

which satisfies the following functional equations: Γq(t+1)= [t]qΓq(t), Γq(1)=1.

For f ∈C[0,∞), q∈(0,1) and n∈N, we introduce a generalization of q-Gamma opera-
tors Gn,q( f ,x) as

Gn,q( f ;x)=
1

xnΓq(n)

∫ ∞/A

0
f

(

t

[n]q

)

tn−1Eq

(

−qt

x

)

dqt. (1.4)

Obviously, Gn,q( f ;x) are positive linear operators. It is observed that for q → 1−,
Gn,1−( f ;x) become the Gamma operators defined in (1.1).
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2 Some preliminary results

In this section, we give the following lemmas, which are need to prove our theorems:

Lemma 2.1. For q∈ (0,1), x∈ [0,∞) and k=0,1,..., we have

Gn,q(t
k;x)=

[n+k−1]q !

[n−1]q![n]kq
xk. (2.1)

Proof. From (1.3) and (1.4), we have

Gn,q(t
k;x)=

1

xnΓq(n)

∫ ∞/A

0

(

t

[n]q

)k

tn−1Eq

(

−qt

x

)

dqt

=
xk

[n]kqΓq(n)

∫ ∞/A

0

(

t

x

)n+k−1

Eq

(

−qt

x

)

dq

(

t

x

)

=
Γq(n+k)xk

[n]kq[n−1]q!
=

[n+k−1]q !

[n−1]q![n]kq
xk.

Lemma 2.1 is proved.

Lemma 2.2. For q∈ (0,1), x∈ [0,∞), we have

Gn,q(1;x)=1, Gn,q(t;x)= x, Gn,q

(

t2;x
)

=

(

1+
qn

[n]q

)

x2, (2.2)

Gn,q

(

t3;x
)

=

[

1+
qn(2+q)

[n]q
+
[2]qq2n

[n]2q

]

x3, (2.3)

Gn,q

(

t4;x
)

=

[

1+

(

1+[2]q+[3]q
)

qn

[n]q
+

(

[2]q+[3]q+[2]q[3]q
)

q2n

[n]2q
+
[2]q[3]qq3n

[n]3q

]

x4. (2.4)

Proof. From Lemma 2.1, we get (2.2) easily. Next,

Gn,q

(

t3;x
)

=
[n+2]q!

[n−1]q![n]3q
x3=

[n+2]q[n+1]q
[n]2q

x3=

(

[n]q+[2]qqn
)(

[n]q+qn
)

[n]2q
x3

=
[n]2q+

(

[2]q+1
)

qn[n]q+[2]qq2n

[n]2q
x3=

[

1+
qn(2+q)

[n]q
+
[2]qq2n

[n]2q

]

x3.

Finally,

Gn,q

(

t4;x
)

=
[n+3]q!

[n−1]q![n]4q
x4=

[n+3]q[n+2]q[n+1]q
[n]3q

x4

=

(

[n]q+[3]qqn
)(

[n]q+[2]qqn
)(

[n]q+qn
)

[n]3q
x4

=

[

1+

(

1+[2]q+[3]q
)

qn

[n]q
+

(

[2]q+[3]q+[2]q[3]q
)

q2n

[n]2q
+
[2]q[3]qq3n

[n]3q

]

x4.
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Lemma 2.2 is proved.

Remark 2.1. Let n∈N and x∈ [0,∞), then for every q∈ (0,1), by Lemma 2.2, we have

Gn,q(1+t;x)=1+x. (2.5)

Lemma 2.3. For every q∈ (0,1) and x∈ [0,∞), we have

Gn,q

(

(t−x)2;x
)

=
qn

[n]q
x2, (2.6)

Gn,q

(

(t−x)4;x
)

=
qn(1−q)2

[n]q
x4+

q2n
(

q3+3q2−1
)

[n]2q
x4+

q3n[2]q[3]q
[n]3q

x4. (2.7)

Proof. Since Gn,q

(

(t−x)2;x
)

=Gn,q

(

t2;x
)

−2xGn,q(t;x)+x2 and Gn,q

(

(t−x)4;x
)

=Gn,q

(

t4;x
)

−
4xGn,q

(

t3;x
)

+6x2Gn,q

(

t2;x
)

−4x3Gn,q(t;x)+x4, and from Lemma 2.2, We get Lemma 2.3
easily.

Remark 2.2. Let the sequence q= {qn} satisfies qn ∈ (0,1) and qn → 1 as n→∞, then for
any fixed x∈ [0,∞), by Lemma 2.3, we have

lim
n→∞

Ln,qn

(

(t−x)2;x
)

=0, lim
n→∞

[n]q

√

Ln,qn ((t−x)4;x)=O(1). (2.8)

3 Local approximation

In this section, we establish direct and local approximation theorems in connection with
the operators Ln,q( f ;x).

We denote the space of all real valued continuous bounded functions f defined on
the interval [0,∞) by CB[0,∞). The norm ||·|| on the space CB[0,∞) is given by || f ||=
sup{| f (x)| : x∈ [0,∞)}.

Further let us consider Peetre’s K−functional:

K2( f ;δ)= inf
g∈W2

{

|| f −g||+δ||g′′ ||
}

,

where δ>0 and W2={g∈CB[0,∞) : g′ ,g′′∈CB[0,∞)}.
For f ∈CB[0,∞), the modulus of continuity of second order is defined by

ω2( f ;δ)= sup
0<h≤δ

sup
x∈[0,∞)

| f (x+2h)−2 f (x+h)+ f (x)|,

by [1, p.177], there exists an absolute constant C>0 such that

K2( f ;δ)≤Cω2

(

f ;
√

δ

)

, δ>0. (3.1)

Our first result is a direct local approximation theorem for the operators Gn,q( f ;x).
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Theorem 3.1. For q∈ (0,1), x∈ [0,∞), n∈N and f ∈CB[0,∞), we have

|Ln,q( f ,x)− f (x)|≤Cω2



 f ;
qn/2

√

[n]q
x



, (3.2)

where C is a positive constant.

Proof. Let g∈W2, by Taylor’s expansion, we have

g(t)= g(x)+g′(x)(t−x)+
∫ t

x
(t−u)g′′(u)du, x,t∈ [0,∞).

Using (2.5), we get

Gn,q(g;x)= g(x)+Gn,q

(

∫ t

x
(t−u)g′′(u)du;x

)

.

Hence, we have

∣

∣Gn,q(g;x)−g(x)
∣

∣=

∣

∣

∣

∣

Gn,q

(

∫ t

x
(t−u)g′′(u)du;x

)∣

∣

∣

∣

≤Gn,q

(∣

∣

∣

∣

∫ t

x
(t−u)|g′′(u)|du

∣

∣

∣

∣

;x

)

≤ qn

[n]q
x2||g′′ ||. (3.3)

On the other hand, using Lemma 2.2, we have

∣

∣Gn,q( f ;x)
∣

∣≤ 1

xnΓq(n)

∫ ∞/A

0

∣

∣

∣

∣

f

(

t

[n]q

)∣

∣

∣

∣

tn−1Eq

(

−qt

x

)

dqt≤|| f ||. (3.4)

Now (3.3) and (3.4) imply

|Gn,q( f ;x)− f (x)|≤|Gn,q( f −g;x)−( f −g)(x)|+|Gn,q(g;x)−g(x)|

≤2|| f −g||+ qn

[n]q
x2||g′′ ||.

Hence taking infimum on the right hand side over all g∈W2, we get

|Gn,q( f ;x)− f (x)|≤2K2

(

f ;
qn

[n]q
x2

)

.

By (3.1), for every q∈ (0,1), we have

|Ln,q( f ,x)− f (x)|≤Cω2



 f ;
qn/2

√

[n]q
x



.

This completes the proof of Theorem 3.1.
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4 Rate of convergence

Let Bx2 [0,∞) be the set of all functions f defined on [0,∞), satisfying the condition | f (x)|≤
M f (1+x2), where M f is a constant depending only on f . We denote the subspace of all
continuous functions belonging to Bx2 [0,∞) by Cx2 [0,∞). Also, let C∗

x2 [0,∞) be the sub-

space of all functions f ∈Cx2 [0,∞), for which limx→∞
f (x)

1+x2 is finite. The norm on C∗
x2 [0,∞)

is || f ||x2 = supx∈[0,∞)
| f (x)|
1+x2 . We denote the usual modulus of continuity of f on the closed

interval [0,a],(a>0) by

ωa( f ,δ)= sup
|t−x|≤δ

sup
x,t∈[0,a]

| f (t)− f (x)|.

Obviously, for the function f ∈Cx2 [0,∞), the modulus of continuity ωa( f ,δ) tends to zero.

Theorem 4.1. Let f ∈Cx2 [0,∞), q∈ (0,1) and ωa+1( f ,δ) be the modulus of continuity on the
finite interval [0,a+1]⊂ [0,∞), where a>0. Then we have

||Gn,q( f )− f ||C[0,a]≤4M f

(

1+a2
) qna2

[n]q
+2ωa+1



 f ,
qn/2a
√

[n]q



. (4.1)

Proof. For x∈ [0,a] and t>a+1, we have t−x≥ t−a>1. Hence (t−x)2
>1. Thus 2+3x2+

2(t−x)2≤(2+3x2)(t−x)2+2(t−x)2=(4+3x2)(t−x)2≤(4+3a2)(t−x)2≤4(1+a2)(t−x)2.
Hence, we obtain

| f (t)− f (x)|≤4M f (1+a2)(t−x)2. (4.2)

For x∈ [0,a] and t≤ a+1, we have

| f (t)− f (x)|≤ωa+1( f ;|t−x|)≤
(

1+
|t−x|

δ

)

ωa+1( f ;δ), δ>0. (4.3)

From (4.2) and (4.3), we get

| f (t)− f (x)|≤4M f (1+a2)(t−x)2+

(

1+
|t−x|

δ

)

ωa+1( f ;δ). (4.4)

For x∈ [0,a] and t≥0, by Schwarz’s inequality and Lemma 2.3, we have

|Gn,q( f ;x)− f (x)|
≤Gn,q(| f (t)− f (x)|;x)

≤4M f (1+a2)Gn,q

(

(t−x)2;x
)

+ωa+1( f ;δ)

[

1+
1

δ

√

Gn,q((t−x)2;x)

]

≤4M f

(

1+a2
) qna2

[n]q
+ωa+1( f ,δ)



1+
1

δ

qn/2a
√

[n]q



,

by taking δ= qn/2a√
[n]q

, we get the assertion of Theorem 4.1.
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5 Weighted approximation and Voronovskaya type asymptotic

formula

Now we will discuss the weighted approximation theorems.

Theorem 5.1. Let the sequence q={qn} satisfies 0<qn<1 and qn→1 as n→∞, for f∈C∗
x2 [0,∞),

we have
lim

n→∞
||Gn,qn( f )− f ||x2 =0. (5.1)

Proof. By using the Korovkin theorem in [2], we see that it is sufficient to verify the fol-
lowing three conditions

lim
n→∞

||Gn,qn(t
v;x)−xv||x2 , v=0,1,2. (5.2)

Since Gn,qn(1;x)=1 and Gn,qn(t;x)= x, (5.2) holds true for v=0 and v=1.
Finally, for v=2, we have

||Gn,qn

(

t2;x
)

−x2||x2 = sup
x∈[0,∞)

|Gn,qn

(

t2;x
)

−x2|
1+x2

≤ qn

[n]q
sup

x∈[0,∞)

x2

1+x2
≤ qn

[n]q
,

since lim
n→∞

qn =1, we get lim
n→∞

qn
n

[n]qn

=0, so the third condition of (5.2) holds for v = 2 as

n→∞, then the proof of Theorem 5.1 is completed.

Finally, we give a Voronovskaya type asymptotic formula for Gn,q( f ;x) by means of
the second and fourth central moments.

Theorem 5.2. Let the sequence q = {qn} satisfies 0< qn < 1 and qn → 1 as n→ ∞. Then for
f ∈C2

x2 [0,∞) and fix x∈ [0,∞), the following equality holds

lim
n→∞

[n]q
(

Gn,q( f ;x)− f (x)
)

=
f ′′(x)

2
x2. (5.3)

Proof. Let x∈ [0,∞) be fixed. By the Taylor formula, we may write

f (t)= f (x)+ f ′(x)(t−x)+
1

2
f ′′(x)(t−x)2+r(t;x)(t−x)2, (5.4)

where r(t;x) is the Peano form of the remainder, r(t;x)∈Cx2 [0,∞), using L’Hopital’s rule,
we have

lim
t→x

r(t;x)=lim
t→x

f (t)− f (x)− f ′(x)(t−x)− 1
2 f ′′(x)(t−x)2

(t−x)2

=lim
t→x

f ′(t)− f ′(x)− f ′′(x)(t−x)

2(t−x)
= lim

t→x

f ′′(t)− f ′′(x)

2
=0.
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Applying Gn,q( f ;x) to (5.4), we obtain

[n]q
(

Gn,q( f ;x)− f (x)
)

=
f ′′(x)

2
[n]qGn,q

(

(t−x)2;x
)

+[n]qGn,q

(

r(t;x)(t−x)2;x
)

.

By the Cauchy-Schwarz inequality, we have

Gn,q

(

r(t;x)(t−x)2;x
)

≤
√

Gn,q(r2(t;x);x)
√

Gn,q((t−x)4;x). (5.5)

Since r2(x;x)=0, then it follows from Theorem 5.1 that

lim
n→∞

Kn,q

(

r2(t;x);x
)

= r2(x;x)=0. (5.6)

Now, from (5.5), (5.6) and (2.8), we get lim
n→∞

[n]qGn,q

(

r(t;x)(t−x)2;x
)

=0. Since

lim
n→∞

[n]qKn,q

(

(t−x)2;x
)

= lim
n→∞

qnx2= x2,

we get the desired result.
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