Volume 49, Issue 4
Hermite Expansion of the Riemann Zeta Function

Bang-He Li

J. Math. Study, 49 (2016), pp. 319-324.

Published online: 2016-12

Export citation
  • Abstract

Let $ζ(s)$ be the Riemann zeta function, $s=\sigma+it$. For $0 < \sigma < 1$, we expand $ζ(s)$ as the following series convergent in the space of slowly increasing distributions with variable $t$ : $$ζ(\sigma+it)=\sum\limits^∞_{n=0}a_n(\sigma)ψ_n(t),$$ where $$ψ_n(t)=(2^nn!\sqrt{\pi})^{-1 ⁄ 2}e^{\frac{-t^2}{2}}H_n(t),$$  $H_n(t)$ is the Hermite polynomial, and $$a_n(σ)=2\pi(-1)^{n+1}ψ_n(i(1-σ))+(-i)^n\sqrt{2\pi}\sum\limits^∞_{m=1}\frac{1}{m^σ}ψ_n(1nm).$$ This paper is concerned with the convergence of the above series for $σ > 0.$ In the deduction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz' distributions.

  • AMS Subject Headings

11M06, 33C45, 46F05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

libh@amss.ac.cn (Bang-He Li)

  • BibTex
  • RIS
  • TXT
@Article{JMS-49-319, author = {Li , Bang-He}, title = {Hermite Expansion of the Riemann Zeta Function}, journal = {Journal of Mathematical Study}, year = {2016}, volume = {49}, number = {4}, pages = {319--324}, abstract = {

Let $ζ(s)$ be the Riemann zeta function, $s=\sigma+it$. For $0 < \sigma < 1$, we expand $ζ(s)$ as the following series convergent in the space of slowly increasing distributions with variable $t$ : $$ζ(\sigma+it)=\sum\limits^∞_{n=0}a_n(\sigma)ψ_n(t),$$ where $$ψ_n(t)=(2^nn!\sqrt{\pi})^{-1 ⁄ 2}e^{\frac{-t^2}{2}}H_n(t),$$  $H_n(t)$ is the Hermite polynomial, and $$a_n(σ)=2\pi(-1)^{n+1}ψ_n(i(1-σ))+(-i)^n\sqrt{2\pi}\sum\limits^∞_{m=1}\frac{1}{m^σ}ψ_n(1nm).$$ This paper is concerned with the convergence of the above series for $σ > 0.$ In the deduction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz' distributions.

}, issn = {2617-8702}, doi = {https://doi.org/10.4208/jms.v49n4.16.01}, url = {http://global-sci.org/intro/article_detail/jms/10116.html} }
TY - JOUR T1 - Hermite Expansion of the Riemann Zeta Function AU - Li , Bang-He JO - Journal of Mathematical Study VL - 4 SP - 319 EP - 324 PY - 2016 DA - 2016/12 SN - 49 DO - http://doi.org/10.4208/jms.v49n4.16.01 UR - https://global-sci.org/intro/article_detail/jms/10116.html KW - Riemann zeta function, Hermite expansion, Schwartz distributions. AB -

Let $ζ(s)$ be the Riemann zeta function, $s=\sigma+it$. For $0 < \sigma < 1$, we expand $ζ(s)$ as the following series convergent in the space of slowly increasing distributions with variable $t$ : $$ζ(\sigma+it)=\sum\limits^∞_{n=0}a_n(\sigma)ψ_n(t),$$ where $$ψ_n(t)=(2^nn!\sqrt{\pi})^{-1 ⁄ 2}e^{\frac{-t^2}{2}}H_n(t),$$  $H_n(t)$ is the Hermite polynomial, and $$a_n(σ)=2\pi(-1)^{n+1}ψ_n(i(1-σ))+(-i)^n\sqrt{2\pi}\sum\limits^∞_{m=1}\frac{1}{m^σ}ψ_n(1nm).$$ This paper is concerned with the convergence of the above series for $σ > 0.$ In the deduction, it is crucial to regard the zeta function as Fourier transfomations of Schwartz' distributions.

Bang-He Li. (2019). Hermite Expansion of the Riemann Zeta Function. Journal of Mathematical Study. 49 (4). 319-324. doi:10.4208/jms.v49n4.16.01
Copy to clipboard
The citation has been copied to your clipboard