# Computational Aspect For Function-Valued Padé-Type Approximation 

Chuanqing Gu* and Jindong Shen<br>(Department of Mathematics, Shanghai University, Shanghai 200444, China<br>E-mail: cqgu@staff.shu.edu.cn, dong81206@163.com)

Received September 2, 2005; Accepted (in revised version) June 27, 2006


#### Abstract

The computational problems of two special determinants are investigated. Those determinants appear in the construction of the function-valued Padé-type approximation for computing Fredholm integral equation of the second kind. The main tool to be used in this paper is the well-known Schur complement theorem.


Keywords: Function-valued Padé-type approximation; Fredholm integral equation of the second kind; determinant; Schur complement.
Mathematics subject classification: O241.83

## 1. Introduction

Consider a Fredholm integral equation of the second kind

$$
\begin{equation*}
x(s)=y(s)+\lambda \int_{a}^{b} K(s, t) x(t) d t, \quad a \leq s, \quad t \leq b \tag{1.1}
\end{equation*}
$$

where $K(s, t)$ and $y(s)$ are both continuous functions in the square area $[a, b] \times[a, b]$ and the interval $[a, b]$, respectively. The solution of equation (1.1) can be expressed as a power series with function-valued coefficient

$$
\begin{equation*}
x(s)=f(s, \lambda)=y_{0}(s)+y_{1}(s) \lambda+y_{2}(s) \lambda^{2}+\cdots+y_{n}(s) \lambda^{n}+\cdots \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
y_{i}(s)=\int_{a}^{b} K^{i}(s, t) y(t) d t, \quad i \geq 1, \quad y_{0}(s)=y(s) \tag{1.3}
\end{equation*}
$$

and $K^{i}(s, t)$ in (1.3) is called the $i$-th iterative kernel.
Suppose that $x(s)=f(s, \lambda)$ as a function about $\lambda$ is analytic when $\lambda=0$, so the series (1.2) is convergent when $|\lambda|$ is sufficiently small. Meanwhile, $y_{i}(s)$ is a continuous function in the interval $[a, b]$. For $y_{i}(s), y_{j}(s) \in L^{2}[a, b]$, define the inner product by

$$
\begin{equation*}
\left(y_{i}, y_{j}\right)=\left(y_{i}(s), y_{j}(s)\right)=\int_{a}^{b} y_{i}(s) y_{j}(s) d s \tag{1.4}
\end{equation*}
$$

[^0]and define the corresponding norm by
$$
\left\|y_{i}(s)\right\|=\sqrt{\left(y_{i}(s), y_{i}(s)\right)}=\left\{\int_{a}^{b} y_{i}^{2}(s) d s\right\}^{\frac{1}{2}} .
$$

A function-valued Padé-type approximation of type $(\mathrm{m} / \mathrm{n})$ for the power series (1.2) is denoted by $(m / n)_{f}(s, \lambda)$.

Theorem 1.1. ([1,2]) If $\operatorname{det}\left(A_{n}\right) \neq 0$, then $(m / n)_{f}(s, \lambda)$ exists, and it holds that

$$
(m / n)_{f}(s, \lambda)=p_{m, n}(s, \lambda) / q_{m, n}(\lambda),
$$

with

$$
\begin{align*}
& q_{m, n}(\lambda)=\operatorname{det}\left[\begin{array}{cc}
A_{n} & l^{(n)} \\
\lambda^{(n)^{T}} & 1
\end{array}\right],  \tag{1.5}\\
& p_{m, n}(s, \lambda)=\operatorname{det}\left[\begin{array}{cc}
A_{n} & l^{(n)} \\
\tilde{\lambda}^{(n)^{T}} & \eta
\end{array}\right], \tag{1.6}
\end{align*}
$$

where

$$
\begin{gather*}
A_{n}=\left[\begin{array}{cccc}
\left(y_{m-n+1}, y_{m-n+1}\right) & \left(y_{m-n+1}, y_{m-n+2}\right) & \cdots & \left(y_{m-n+1}, y_{m}\right) \\
\left(y_{m-n+1}, y_{m-n+2}\right) & \left(y_{m-n+1}, y_{m-n+3}\right) & \cdots & \left(y_{m-n+1}, y_{m+1}\right) \\
\ldots & \cdots & \cdots & \\
\left(y_{m-n+1}, y_{m}\right) & \left(y_{m-n+1}, y_{m+1}\right) & \cdots & \left(y_{m-n+1}, y_{m+n-1}\right)
\end{array}\right],  \tag{1.7}\\
\lambda^{(n)}=\left(\lambda^{n}, \lambda^{n-1}, \cdots, \lambda\right)^{T}, \\
\tilde{\lambda}^{(n)}=\left(\sum_{i=n}^{m} y_{i-n} \lambda^{i}, \sum_{i=n-1}^{m} y_{i-n+1} \lambda^{i}, \cdots, \sum_{i=1}^{m} y_{i-1} \lambda^{i}\right)^{T}, \\
l^{(n)}=\left(\left(y_{m-n+1}, y_{m+1}\right),\left(y_{m-n+1}, y_{m+2}\right), \cdots,\left(y_{m-n+1}, y_{m+n}\right)\right)^{T}, \\
\eta=\sum_{i=0}^{m} y_{i} \lambda^{i} .
\end{gather*}
$$

From Theorem 1.1, we observe that the central point to construct a $(m / n)_{f}(s, \lambda)$ is how to compute two determinants (1.5) and (1.6). Therefore, we need the following well-known result.

Lemma 1.1 (Schur complement). Let $A$ be an $n \times n$ real matrix and partitioned into $2 \times 2$ block matrix $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$. If $A_{11} \in C^{k \times k}$ is nonsingular, then

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{11}\right) \operatorname{det}\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right) .
$$


[^0]:    *Corresponding author.

