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Abstract. This paper constructs a new kind of block based bivariate blending rational
interpolation via symmetric branched continued fractions. The construction process may be
outlined as follows. The first step is to divide the original set of support points into some
subsets (blocks). Then construct each block by using symmetric branched continued fraction.
Finally assemble these blocks by Newton’s method to shape the whole interpolation scheme.
Our new method offers many flexible bivariate blending rational interpolation schemes which
include the classical bivariate Newton’s polynomial interpolation and symmetric branched
continued fraction interpolation as its special cases. The block based bivariate blending
rational interpolation is in fact a kind of tradeoff between the purely linear interpolation
and the purely nonlinear interpolation. Finally, numerical examples are given to show the
effectiveness of the proposed method.
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1 Introduction

Bivariate Newton’s polynomial interpolation may be the most commonly used bivariate inter-
polation. It uses the bivariate partial divided differences which can be calculated recursively
and produce useful intermediate results. On the other hand, the most powerful bivariate in-
terpolation is the one using bivariate rational functions. The main advantage of the rational
functions over polynomials is their ability to model functions with nonlinear characters (such as
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poles or other singularity) and their fast convergence properties. Given a set of two dimensional
points Πmn = {(xi, yj) | i = 0, 1, . . . , m; j = 0, 1, . . . , n}, and suppose that f(x, y) is defined on
D ⊃ Πmn. Then one has two basic approaches for interpolating f(x, y) on Πmn. One is the
bivariate Newton’s interpolating polynomial ([5])

P (x, y) =
m

∑

i=0

n
∑

j=0

f [x0, . . . , xi; y0, . . . , yj ]
i−1
∏

h=0

(x − xh)

j−1
∏

k=0

(y − yk),

where the empty products are defined to take the value 1, and

f [x0; y0] = f(x0, y0),

f [x0, . . . , xi; y0] =
f [x1, . . . , xi; y0] − f [x0, . . . , xi−1; y0]

xi − x0
,

f [x0, . . . , xi; y0, . . . , yj ] =
f [x0, . . . , xi; y1, . . . , yj] − f [x0, . . . , xi; y0, . . . , yj−1]

yj − y0
.

The other one is the interpolating symmetric branched continued fraction ([2–4,7])

R(x, y) = ϕ00 +

m
∑

k=1

x − xk−1

ϕk0
+

n
∑

k=1

y − yk−1

ϕ0k

+

m
∑

l=1

(x − xl−1)(y − yl−1)

ϕll +

m
∑

k=l+1

x − xk−1

ϕkl

+

n
∑

k=l+1

y − yk−1

ϕlk

, (m ≤ n)

or

R(x, y) = ϕ00 +
m

∑

k=1

x − xk−1

ϕk0
+

n
∑

k=1

y − yk−1

ϕ0k

+

n
∑

l=1

(x − xl−1)(y − yl−1)

ϕll +

m
∑

k=l+1

x − xk−1

ϕkl

+

n
∑

k=l+1

y − yk−1

ϕlk

, (n ≤ m)

where ϕij = ϕ[x0, . . . , xi; y0, . . . , yj], and

ϕ[x0; y0] = f(x0, y0),

ϕ[x0, . . . , xk; y0] =
xk − xk−1

ϕ[x0, . . . , xk−2, xk; y0] − ϕ[x0, . . . , xk−1; y0]
,

ϕ[x0; y0, . . . , yk] =
yk − yk−1

ϕ[x0; y0, . . . , yk−2, yk] − ϕ[x0; y0, . . . , yk−1]
,

ϕ[x0, . . . , xj ; y0, . . . , yj ] = (xj − xj−1)(yj − yj−1)(ϕ[x0, . . . , xj−2, xj ; y0, . . . , yj−2, yj ]

−ϕ[x0, . . . , xj−1; y0, . . . , yj−2, yj ] − ϕ[x0, . . . , xj−2, xj ; y0, . . . , yj−1]

+ϕ[x0, . . . , xj−1; y0, . . . , yj−1])
−1,

and for k > j

ϕ[x0, . . . , xk; y0, . . . , yj ] =
xk − xk−1

ϕ[x0, . . . , xk−2, xk; y0, . . . , yj] − ϕ[x0, . . . , xk−1; y0, . . . , yj ]
,

ϕ[x0, . . . , xj ; y0, . . . , yk] =
yk − yk−1

ϕ[x0, . . . , xj ; y0, . . . , yk−2, yk] − ϕ[x0, . . . , xj ; y0, . . . , yk−1]
.


