The Equivalence of Ishikawa-Mann and Multistep Iterations in Banach Space ${ }^{\dagger}$

Liping Yang*
Faculty of Applied Mathematics, Guangdong University of Technology, Guangdong 510090, China.

Received June 8, 2005; Accepted (in revised version) February 16, 2006

Abstract

Let E be a real Banach space and T be a continuous Φ-strongly accretive operator. By using a new analytical method, it is proved that the convergence of Mann, Ishikawa and three-step iterations are equivalent to the convergence of multistep iteration. The results of this paper extend the results of Rhoades and Soltuz in some aspects.

Key words: Φ-strongly accretive operator; Φ-strongly pseudocontractive operator; continuous; Mann iteration; Ishikawa iteration; multistep iteration.

AMS subject classifications: $47 \mathrm{H} 09,47 \mathrm{H} 10$

1 Introduction

Let E denote an arbitrary real Banach space and E^{*} denote the dual space of E. The duality map $J: E \rightarrow 2^{E^{*}}$ is defined by

$$
J x:=\left\{u^{*} \in E^{*}:\left\langle x, u^{*}\right\rangle=\|x\|^{2} ;\left\|u^{*}\right\|=\|x\|\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the generalized duality pairing between elements of E and E^{*}. We first recall and define some concepts as follows:
Definition 1.1. Let K be a nonempty subset of E and let $T: K \rightarrow E$ be an operator.
(i). T is said to be accretive if, for $\forall x, y \in K$, there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq 0 \tag{1}
\end{equation*}
$$

(ii). T is said to be strongly accretive if, for $\forall x, y \in K$, there exists $j(x-y) \in J(x-y)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq k\|x-y\|^{2} \tag{2}
\end{equation*}
$$

where $k>0$ is a constant. Without loss of generality, we assume that $k \in(0,1)$.

[^0](iii). T is said to be Φ-strongly accretive if, for $\forall x, y \in K$, there exists $j(x-y) \in J(x-y)$ such that
\[

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \geq \Phi(\|x-y\|)\|x-y\|, \tag{3}
\end{equation*}
$$

\]

where $\Phi:[0, \infty) \rightarrow[0, \infty)$ is a function for which $\Phi(0)=0, \Phi(r)>0$ for all $r>0, \liminf _{r \rightarrow \infty} \Phi(r)>0$ and the function $h(r)=r \Phi(r)$ is nondecreasing on $[0, \infty)$.

If I denotes the identity operator, it follows from inequalities (1)-(3) that T is pseudocontractive (respectively, strongly pseudocontractive, Φ-strongly pseudocontractive) if and only if $(I-T)$ is an accretive (respectively, strongly accretive, Φ-strongly accretive). It is shown in [1] that the class of single-valued strongly pseudocontractive operators is a proper subclass of the class of single-valued Φ-strongly pseudocontractive operators. The classes of single-valued operators have been studied by many authors (see, for example [1]- [13]).

Now, we state concepts which will be needed in the sequel.
(a). The iteration (see [9])

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}^{1}, \tag{4}\\
y_{n}^{1}=\left(1-\beta_{n}^{1}\right) x_{n}+\beta_{n}^{1} T x_{n}, \quad n=0,1,2, \cdots
\end{array}\right.
$$

is called the Ishikawa iteration sequence, where $\left\{\alpha_{n}\right\},\left\{\beta_{n}^{1}\right\}$ are real sequences in $[0,1]$ satisfying some appropriate conditions.
(b). In particular, if $\beta_{n}^{1}=0$ for $n \geq 0$, the sequence $\left\{x_{n}\right\}$ defined by

$$
\begin{equation*}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T x_{n}, \quad n=0,1,2, \cdots \tag{5}
\end{equation*}
$$

is called the Mann iteration (see [10]).
(c). In [11], Noor introduced the three-step procedure

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+T y_{n}^{1}, \tag{6}\\
y_{n}^{1}=\left(1-\beta_{n}^{1}\right) x_{n}+\beta_{n}^{1} T y_{n}^{2}, \\
y_{n}^{2}=\left(1-\beta_{n}^{2}\right) x_{n}+\beta_{n}^{2} T x_{n}, \quad n=0,1,2, \cdots,
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\},\left\{\beta_{n}^{1}\right\},\left\{\beta_{n}^{2}\right\}$ are real sequences in $[0,1]$ satisfying some appropriate conditions.
(d). In [13], Rhoades and Soltuz introduced the multi-step procedure

$$
\left\{\begin{array}{l}
x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+T y_{n}^{1}, \tag{7}\\
y_{n}^{i}=\left(1-\beta_{n}^{i}\right) x_{n}+\beta_{n}^{i} T y_{n}^{i+1}, \quad i=1, \cdots, p-2 \\
y_{n}^{p-1}=\left(1-\beta_{n}^{p-1}\right) x_{n}+\beta_{n}^{p-1} T x_{n}, \quad n=0,1,2, \cdots
\end{array}\right.
$$

where $p \geq 2$ is a fixed order, $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ such that for all $n \in \mathbb{N}$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \alpha_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \tag{8}
\end{equation*}
$$

Moreover, for all $n \in \mathbb{N}$

$$
\begin{equation*}
\left\{\beta_{n}^{i}\right\} \subset[0,1), \quad 1 \leq i \leq p-1, \quad \lim _{n \rightarrow \infty} \beta_{n}^{1}=0 \tag{9}
\end{equation*}
$$

[^0]: *Correspondence to: Liping Yang, Faculty of Applied Mathematics, Guangdong University of Technology, Guangdong 510090, China. Email: yanglping2003@126.com
 ${ }^{\dagger}$ Supported by the Nature Science Foundation of Guangdong Province (020163).

