A FAST SINE TRANSFORM ALGORITHM FOR TOEPLITZ MATRICES AND ITS APPLICATIONS＊

Wang Xiang（汪 祥）Lu Linzhang（卢琳璋）

Abstract

In this paper，a fast algorithm for the discrete sine transform（DST）of a Toeplitz matrix of order N is derived．Only $O(N \log N)+O(M)$ time is needed for the computation of M elements．The auxiliary storage requirement is $O(N)$ ．An application of the new fast algorithm is also discussed．

Key words Toeplitz matrices；discrete sine transform；Jacobi rotation method．
AMS（2000）subject classifications 15A24，65F10，82C70

1 Introduction

We denote by S_{N} the discrete sine transform matrix of order N

$$
S_{N}=\left[\sqrt{\frac{2}{N+1}} \sin \frac{(m+1)(l+1) \pi}{N+1}\right]_{m, l=0}^{N-1}
$$

for convenience，the indexes of S_{N} run from 0 to $\mathrm{N}-1 . S_{N}$ is orthogonal and symmetric，which means $S_{N}^{-1}=S_{N}^{T}=S_{N}$ ．

A real $N \times N$ Toeplitz matrix can be denoted by

$$
A=\left[\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & \cdots & a_{N-1} \tag{1}\\
a_{-1} & a_{0} & a_{1} & \cdots & a_{N-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{-N+1} & a_{-N+2} & a_{-N+3} & \cdots & a_{0}
\end{array}\right] .
$$

That is，$A=\left(a_{l, k}\right), a_{l, k}=a_{k-l}, l, k=0,1, \cdots, N-1$ ．
Toeplitz matrices and discrete sine transform（DST）arise in many applications of digital signal and image processing（［1］－［10］）．In this paper we propose a fast algorithm for the discrete

[^0]sine transform of a Toeplitz matrix. The algorithm is much faster than only an FFT implementation of the DST(see [4] would yield). We give an application of the DST to the eigenvalue computation of symmetric Toeplitz matrices and some numerical examples.

2 Fast sine transform algorithm for Toeplitz matrices

Let $\hat{A}=\left(\hat{a}_{m, n}\right)=T A T, s_{m, l}=\sin \frac{(m+1)(l+1) \pi}{N+1}$, then

$$
\begin{equation*}
\hat{a}_{m, n}=\frac{2}{N+1}\left(\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} s_{m, l} a_{l, k} s_{n, k}\right) \tag{2}
\end{equation*}
$$

Introducing the quantities

$$
\begin{equation*}
x_{m, k}=\sum_{l=0}^{N-1} w^{(m+1)(l+1)} a_{l, k} \text { with } w=\exp \left(i \frac{\pi}{N+1}\right) \tag{3}
\end{equation*}
$$

we get

$$
\begin{equation*}
\hat{a}_{m, n}=\frac{2}{N+1}\left(\sum_{k=0}^{N-1} \operatorname{Im}\left\{x_{m, k}\right\} s_{n, k}\right) \tag{4}
\end{equation*}
$$

where $\operatorname{Im}\{\cdot\}$ denotes the image part of a complex entity, and we have used the fact that the matrix A is real.

Let

$$
\begin{equation*}
y_{m, n+1}=\sum_{k=0}^{N-1} x_{m, k} w^{(n+1) k} \tag{5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\hat{a}_{m, n}=\frac{2}{N+1} \operatorname{Im}\left\{w^{n+1} \frac{y_{m, n+1}-\bar{y}_{m,-(n+1)}}{2 i}\right\} \tag{6}
\end{equation*}
$$

here \bar{z} denotes the complex conjugate of z. In fact,

$$
\begin{aligned}
\hat{a}_{m, n} & =\frac{2}{N+1}\left(\sum_{k=0}^{N-1} \operatorname{Im}\left\{x_{m, k}\right\} s_{n, k}\right) \\
& =\frac{2}{N+1}\left(\sum_{k=0}^{N-1} \operatorname{Im}\left\{x_{m, k}\right\} \operatorname{Im}\left\{w^{(n+1)(k+1)}\right\}\right) \\
& =\frac{2}{N+1} \operatorname{Im}\left\{w^{n+1} \sum_{k=0}^{N-1}\left(\operatorname{Im}\left\{x_{m, k}\right\} w^{(n+1) k}\right)\right\}
\end{aligned}
$$

As

$$
\begin{aligned}
y_{m, n+1}-\bar{y}_{m,-(n+1)} & =\sum_{k=0}^{N-1} x_{m, k} w^{(n+1) k}-\overline{\left(\sum_{k=0}^{N-1} x_{m, k} w^{-(n+1) k}\right)} \\
& =\sum_{k=0}^{N-1}\left(w^{(n+1) k} x_{m, k}-\overline{w^{-(n+1) k}} \bar{x}_{m, k}\right)
\end{aligned}
$$

[^0]: ＊This work is supported by National Natural Science Foundation of China No． 10271099.
 Received：Sep．25， 2004.

