THE MONOTONICITY OF CONVERGENCE RATE FOR MGS METHODS*

Wang Yongjun(王永俊)

Abstract In this paper we prove that the asymptotic rate of convergence of the modified Gauss-Seidel method of a non-singular M-matrix is a monotonic function for precondition parameters $0 \le \alpha_i \le \frac{1}{2}$, $(i = 1, 2, \dots, n-1)$. Key words Gauss-seidel method, convergence rate, monotonicity. AMS(2000)subject classifications 65F10

1 Introduction

Let A be an $n \times n$ matrix with all diagonal entries 1, -L and -U be strictly lower and strictly upper triangular part of A, respectively. Then the Gauss-Seidel splitting of A has the form that A = (I - L) - U, where I is the identity matrix of order n. For the convenience of statement, we take the notations as follows:

$$V = \begin{bmatrix} 0 & -a_{12} & 0 & \cdots & 0 \\ 0 & 0 & -a_{23} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -a_{n-1,n} \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

and $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{n-1}), D_{\alpha} = \text{diag}(\alpha_1, \alpha_2, \dots, \alpha_{n-1}, 1), S_{\alpha} = D_{\alpha}V, P_{\alpha} = I + S_{\alpha}, A_{\alpha} = P_{\alpha}A$. Briefly, we denote D_c, S_c, P_c, A_c , etc. for the case α_i ($\forall i$) all c, respectively.

Consider Gauss-Seidel splitting $A_{\alpha} \stackrel{\circ}{=} E_{\alpha} - F_{\alpha}$. Observably, A_0 is the case of standard Gauss-Seidel splitting of A. Gunawardena et al [1] studied firstly the convergence for A_1 (the Modified Gauss-Seidel method). And then Kohno et al [2] extended to the general case for $0 \leq \alpha \leq 1$.

When A is a non-singular M-matrix, the iterative matrix $T_{\alpha} = E_{\alpha}^{-1}F_{\alpha}$ of Gauss-Seidel splitting for A_{α} is non-negative, and has the spectral radius $\rho_{\alpha} = \rho(T_{\alpha}) < 1$. Gunawardena's works [1] show that $\rho_1 \leq \rho_0$, and Li's works [3] show that $\rho_{\alpha} \leq \rho_0$ for $0 \leq \alpha \leq 1$. In [4], Li shows that $\rho_{\alpha} \geq \rho_{\beta}$ for $0 \leq \alpha \leq \beta \leq \varepsilon$, where ε is some vector only relative to matrix A when A is a diagonally dominant non-singular M-matrix, and conjectures that the above statement would be true for $0 \leq \alpha \leq \beta \leq 1$. That is, ρ_{α} would be a monotonic function when $0 \leq \alpha \leq 1$.

^{*}Received: Mar. 10, 2003.

In this paper, we show Li's conjecture true for any non-singular *M*-matrix when $0 \le \alpha \le \xi$, (where $\xi \ge \frac{1}{2}$ and only relative to *A*) without the assumption that *A* is diagonally dominant.

2 Some Facts and Lemmas

Throughout the rest of this paper, we always suppose that A is a non-singular *M*-matrix, $0 \leq \alpha \leq \beta \leq 1$, and $M_{\varepsilon} = P_{\varepsilon}^{-1}E_{\varepsilon}$, $N_{\varepsilon} = P_{\varepsilon}^{-1}F_{\varepsilon}$, x_{ε} is a non-negative eigenvector belonging to ρ_{ε} of T_{ε} (where $\varepsilon = \alpha, \beta$). By simple computing, following facts can be obtained :

$$N_{\varepsilon} = (U - S_{\varepsilon}) + S_{\varepsilon}^{2} \left(I - S_{\varepsilon}^{2} \right)^{-1} (I - S_{\varepsilon}), \qquad (2.1)$$

$$M_{\varepsilon}^{-1}N_{\varepsilon} = E_{\varepsilon}^{-1}F_{\varepsilon} = T_{\varepsilon} \ge 0, \qquad (2.2)$$

$$F_{\varepsilon} \ge 0.$$
 (2.3)

Some lemmas without proof are stated as follows, which can be easily followed from [4][5]:

Lemma 2.1 If
$$\rho_{\varepsilon} > 0$$
, $Ax_{\varepsilon} = \frac{1 - \rho_{\varepsilon}}{\rho_{\varepsilon}} N_{\varepsilon} x_{\varepsilon}$, and $A_{\varepsilon} x_{\varepsilon} = \frac{1 - \rho_{\varepsilon}}{\rho_{\varepsilon}} F_{\varepsilon} x_{\varepsilon} \ge 0$.
Lemma 2.2 $T_{\alpha} A^{-1} \ge T_{\beta} A^{-1}$.

Lemma 2.3 $A_{\varepsilon} = P_{\varepsilon}A$ is a non-singular *M*-matrix.

3 Results

Now, we show our main theorem.

Theorem 3.1 Let A be a non-singular M-matrix, $0 \le \alpha \le \beta \le \xi$, where $\xi_i = \frac{1}{1 + \sqrt{1 - a_{i,i+1}a_{i+1,i}}} \quad (0 \le i < n). \text{ Then } \rho_\alpha \ge \rho_\beta.$ **Proof** When $\rho_\beta = 0, \ \rho_\alpha \ge 0 = \rho_\beta$, it obvious.

Now suppose that $0 < \rho_{\beta} < 1$.

Let $q_i = \frac{1}{1 - \beta_i a_{i,i+1} a_{i+1,i}}$, $Q_\beta = \text{diag}(q_1, \dots, q_{n-1}, 1)$, $s_i = -\beta_i a_{i,i+1}$, $(0 \le i < n)$. Because A is a non-singular M-matrix, $1 > a_{i,i+1} a_{i+1,i}$. So, $\xi_i < 1 \le q_i$, $(0 \le i < n)$. Then

$$\begin{aligned} (Q_{\beta}A_{\beta} - (I - S_{\beta}))_{i,i+1} &= (Q_{\beta}A_{\beta} + S_{\beta})_{i,i+1} = q_i(1 - \beta_i)a_{i,i+1} + s_i \\ &= \frac{(1 - \beta_i)a_{i,i+1}}{1 - \beta_i a_{i,i+1}a_{i+1,i}} - \beta_i a_{i,i+1} = q_i a_{i,i+1} \cdot (1 - 2\beta_i + \beta_i^2 a_{i,i+1}a_{i+1,i}). \end{aligned}$$

If $a_{i,i+1}a_{i+1,i} = 0$, then $1 - 2\beta_i \ge 1 - 2\xi_i = 0$. So, $(I - S_\beta)_{i,i+1} \ge (Q_\beta A_\beta)_{i,i+1}$ because of $a_{i,i+1} \le 0$. While $a_{i,i+1}a_{i+1,i} > 0$, we have that

$$1 - 2\beta_i + \beta_i^2 a_{i,i+1} a_{i+1,i} = \left(\frac{1}{1 - \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_i\right) \cdot \left(\frac{1}{1 + \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_i\right)$$
$$= \left(\frac{1}{1 - \sqrt{1 - a_{i,i+1}a_{i+1,i}}} - \beta_i\right) \cdot (\xi_i - \beta_i).$$