THE MONOTONICITY OF CONVERGENCE RATE FOR MGS METHODS＊

Wang Yongjun（王永俊）

Abstract

In this paper we prove that the asymptotic rate of convergence of the mod－ ified Gauss－Seidel method of a non－singular M－matrix is a monotonic function for precondition parameters $0 \leqslant \alpha_{i} \leqslant \frac{1}{2},(i=1,2, \cdots, n-1)$ ． Key words Gauss－seidel method，convergence rate，monotonicity．

AMS（2000）subject classifications 65F10

1 Introduction

Let A be an $n \times n$ matrix with all diagonal entries $1,-L$ and $-U$ be strictly lower and strictly upper triangular part of A ，respectively．Then the Gauss－Seidel splitting of A has the form that $A=(I-L)-U$ ，where I is the identity matrix of order n ．For the convenience of statement，we take the notations as follows：

$$
V=\left[\begin{array}{ccccc}
0 & -a_{12} & 0 & \cdots & 0 \\
0 & 0 & -a_{23} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -a_{n-1, n} \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

and $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1}\right), D_{\alpha}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-1}, 1\right), S_{\alpha}=D_{\alpha} V, P_{\alpha}=I+S_{\alpha}, A_{\alpha}=$ $P_{\alpha} A$ ．Briefly，we denote $D_{c}, S_{c}, P_{c}, A_{c}$ ，etc．for the case $\alpha_{i}(\forall i)$ all c ，respectively．

Consider Gauss－Seidel splitting $A_{\alpha} \stackrel{\circ}{=} E_{\alpha}-F_{\alpha}$ ．Observably，A_{0} is the case of standard Gauss－Seidel splitting of A ．Gunawardena et al［1］studied firstly the convergence for A_{1}（the Modified Gauss－Seidel method）．And then Kohno et al［2］extended to the general case for $0 \leqslant \alpha \leqslant 1$ ．

When A is a non－singular M－matrix，the iterative matrix $T_{\alpha}=E_{\alpha}^{-1} F_{\alpha}$ of Gauss－Seidel splitting for A_{α} is non－negative，and has the spectral radius $\rho_{\alpha}=\rho\left(T_{\alpha}\right)<1$ ．Gunawardena＇s works［1］show that $\rho_{1} \leqslant \rho_{0}$ ，and Li＇s works［3］show that $\rho_{\alpha} \leqslant \rho_{0}$ for $0 \leqslant \alpha \leqslant 1$ ．In［4］，Li shows that $\rho_{\alpha} \geqslant \rho_{\beta}$ for $0 \leqslant \alpha \leqslant \beta \leqslant \varepsilon$ ，where ε is some vector only relative to matrix A when A is a diagonally dominant non－singular M－matrix，and conjectures that the above statement would be true for $0 \leqslant \alpha \leqslant \beta \leqslant 1$ ．That is，ρ_{α} would be a monotonic function when $0 \leqslant \alpha \leqslant 1$ ．

[^0]In this paper, we show Li's conjecture true for any non-singular M-matrix when $0 \leqslant \alpha \leqslant \xi$, (where $\xi \geqslant \frac{1}{2}$ and only relative to A) without the assumption that A is diagonally dominant.

2 Some Facts and Lemmas

Throughout the rest of this paper, we always suppose that A is a non-singular M-matrix, $0 \leqslant \alpha \leqslant \beta \leqslant 1$, and $M_{\varepsilon}=P_{\varepsilon}^{-1} E_{\varepsilon}, N_{\varepsilon}=P_{\varepsilon}^{-1} F_{\varepsilon}, x_{\varepsilon}$ is a non-negative eigenvector belonging to ρ_{ε} of T_{ε} (where $\varepsilon=\alpha, \beta$). By simple computing, following facts can be obtained :

$$
\begin{gather*}
N_{\varepsilon}=\left(U-S_{\varepsilon}\right)+S_{\varepsilon}^{2}\left(I-S_{\varepsilon}^{2}\right)^{-1}\left(I-S_{\varepsilon}\right) \tag{2.1}\\
M_{\varepsilon}^{-1} N_{\varepsilon}=E_{\varepsilon}^{-1} F_{\varepsilon}=T_{\varepsilon} \geqslant 0 \tag{2.2}\\
F_{\varepsilon} \geqslant 0 \tag{2.3}
\end{gather*}
$$

Some lemmas without proof are stated as follows, which can be easily followed from [4][5]:
Lemma 2.1 If $\rho_{\varepsilon}>0, A x_{\varepsilon}=\frac{1-\rho_{\varepsilon}}{\rho_{\varepsilon}} N_{\varepsilon} x_{\varepsilon}$, and $A_{\varepsilon} x_{\varepsilon}=\frac{1-\rho_{\varepsilon}}{\rho_{\varepsilon}} F_{\varepsilon} x_{\varepsilon} \geqslant 0$.
Lemma 2.2 $T_{\alpha} A^{-1} \geqslant T_{\beta} A^{-1}$.
Lemma $2.3 A_{\varepsilon}=P_{\varepsilon} A$ is a non-singular M-matrix.

3 Results

Now, we show our main theorem.
Theorem 3.1 Let A be a non-singular M-matrix, $0 \leqslant \alpha \leqslant \beta \leqslant \xi$, where $\xi_{i}=\frac{1}{1+\sqrt{1-a_{i, i+1} a_{i+1, i}}}(0 \leqslant i<n)$. Then $\rho_{\alpha} \geqslant \rho_{\beta}$.

Proof When $\rho_{\beta}=0, \rho_{\alpha} \geqslant 0=\rho_{\beta}$, it obvious.
Now suppose that $0<\rho_{\beta}<1$.
Let $q_{i}=\frac{1}{1-\beta_{i} a_{i, i+1} a_{i+1, i}}, Q_{\beta}=\operatorname{diag}\left(q_{1}, \cdots, q_{n-1}, 1\right), s_{i}=-\beta_{i} a_{i, i+1},(0 \leqslant i<n)$. Because A is a non-singular M-matrix, $1>a_{i, i+1} a_{i+1, i}$. So, $\xi_{i}<1 \leqslant q_{i},(0 \leqslant i<n)$. Then

$$
\begin{aligned}
\left(Q_{\beta} A_{\beta}-\left(I-S_{\beta}\right)\right)_{i, i+1} & =\left(Q_{\beta} A_{\beta}+S_{\beta}\right)_{i, i+1}=q_{i}\left(1-\beta_{i}\right) a_{i, i+1}+s_{i} \\
& =\frac{\left(1-\beta_{i}\right) a_{i, i+1}}{1-\beta_{i} a_{i, i+1} a_{i+1, i}}-\beta_{i} a_{i, i+1}=q_{i} a_{i, i+1} \cdot\left(1-2 \beta_{i}+\beta_{i}^{2} a_{i, i+1} a_{i+1, i}\right)
\end{aligned}
$$

If $a_{i, i+1} a_{i+1, i}=0$, then $1-2 \beta_{i} \geqslant 1-2 \xi_{i}=0$. So, $\left(I-S_{\beta}\right)_{i, i+1} \geqslant\left(Q_{\beta} A_{\beta}\right)_{i, i+1}$ because of $a_{i, i+1} \leqslant 0$. While $a_{i, i+1} a_{i+1, i}>0$, we have that

$$
\begin{aligned}
1-2 \beta_{i}+\beta_{i}^{2} a_{i, i+1} a_{i+1, i} & =\left(\frac{1}{1-\sqrt{1-a_{i, i+1} a_{i+1, i}}}-\beta_{i}\right) \cdot\left(\frac{1}{1+\sqrt{1-a_{i, i+1} a_{i+1, i}}}-\beta_{i}\right) \\
& =\left(\frac{1}{1-\sqrt{1-a_{i, i+1} a_{i+1, i}}}-\beta_{i}\right) \cdot\left(\xi_{i}-\beta_{i}\right)
\end{aligned}
$$

[^0]: ＊Received：Mar．10， 2003.

