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Abstract. A kind of stabilized mixed/hybrid scheme for Reissner-Mindlin plates is proposed
with conforming isoparametric bilinear interpolations of deflection/rotations. The choice of
shear stress modes is discussed. It is shown by numerical experiments that fulfilling an
energy orthogonal condition for stress approximations is crucial to avoiding “shear locking”.
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1 Introduction

In recent years, a lot of work for the Mindlin-Reissner (R-M) plate model has been done in the
engineering and mathematical literatures (see [1-5, 7-15, 17] and references therein). As one
knows, one of the most important problems is how to avoid the locking phenomena in the thin
plate case.

Among the existing approaches, a stabilizing technique has often been used [10, 11, 14,
17] to avoid the “shear locking”. In this paper, we will discuss the influence of stress choices
to the “locking” for stabilized lower order quadrilateral R-M plate elements with conforming
isoparametric bilinear interpolations for approximations of the deflection/rotations.

Let Ω ⊂ R2 be the midsurface of the plate. The variational problem for the Mindlin-Reissner
plate bending model with clamped boundary reads as: find the deflection ω ∈ H1

0 (Ω) and the
rotation vector β ∈ [H1

0 (Ω)]2, such that

a(β, ζ) +
λ

t2
(▽ω − β,▽v − ζ) = (f, v) ∀(v, ζ) ∈ [H1

0 (Ω)]3, (1)

where t is the thickness of the plate, λ =
5E

12(1 + ν)
, with E the Young’s modulus and ν the

Poisson ratio, f is the transverse load, a(β, ζ) :=

∫

Ω

ǫ(β) : Dbǫ(ζ)dΩ, with ǫ(β) = 1
2 [∇β+(∇β)T ]
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the bending strain tensor and

Db =
E

12(1 − ν2)




1 ν 0
ν 1 0
0 0 (1 − ν)/2





the elasticity matrix.
By introducing the scaled shear stress γ = λ(▽ω − β)/t2 as an independent unknown, the

mixed/hybrid form of (1) is: find (ω, β; γ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2 × [L2(Ω)]2 such that

a(β, ζ) + (▽v − ζ, γ) = (f, v), ∀(v, ζ) ∈ H1
0 (Ω) × [H1

0 (Ω)]2, (2)

t2

λ
(γ, τ) − (▽ω − β, τ) = 0, ∀τ ∈ [L2(Ω)]2. (3)

The potential energy functional for (1) and the mixed/hybrid energy functional for (2)-(3)
are respectively of the following forms:

Πp(v, ζ) =
1

2

(
a(ζ, ζ) +

λ

t2
(▽v − ζ,▽v − ζ)

)
− (f, v), (4)

ΠHR(v, ζ; τ) =
1

2

(
a(ζ, ζ) −

t2

λ
(τ, τ) + 2(τ,▽v − ζ)

)
− (f, v)

= Πp(v, ζ) −
t2

2λ
(τ − λt−2(▽v − ζ), τ − λt−2(▽v − ζ)). (5)

Thus, we have:

ΠHR(ω, β; γ) = inf
(v,ζ)

sup
τ

ΠHR(v, ζ; τ)

= inf
(v,ζ)

(
Πp(v, ζ) − inf

τ

t2

2λ
(τ − λt−2(▽v − ζ), τ − λt−2(▽v − ζ))

)
,

which means, in discretized cases, that the energy of the mixed/hybrid model is always no greater
than that of the potential energy model; that a much bigger stress approximation subspace can
lead to a much bigger (thus bad) energy approximation of the mixed/hybrid finite element model.

2 The finite element method and stress choices

Let Ch be the finite element partitioning of Ω into convex quadrilaterals and define the finite
element subspaces for the deflection and rotation vector as

Wh := {v ∈ H1
0 (Ω) : v |K∈ span{1, ξ, η, ξη}, ∀K ∈ Ch},

Vh := {ζ ∈ [H1
0 (Ω)]2 : ζ |K∈ [span{1, ξ, η, ξη}]2, ∀K ∈ Ch},

where ξ, η are the isoparametric coordinates, and the isoparametric mapping FK : K̂ =
[−1, 1]2 → K is given by

{
x
y

}
= FK(ξ, η) =

1

4

4∑

i=1

(1 + ξiξ)(1 + ηiη)

{
xi

yi

}
=

{
a0 + a1ξ + a2ξη + a3η
b0 + b1ξ + b2ξη + b3η

}
.


