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Abstract. An exact self-similar solution is used to investigate current sheet formation at
a magnetic neutral line in incompressible Hall magnetohydrodynamics. The collapse to
a current sheet is modelled as a finite-time singularity in the solution for electric current
density at the neutral line. We establish that a finite-time collapse to the current sheet
can occur in Hall magnetohydrodynamics, and we find a criterion for the finite-time
singularity in terms of the initial conditions. We derive an asymptotic solution for the
singularity formation and a formula for the singularity formation time. The analytical
results are illustrated by numerical solutions, and we also investigate an alternative
similarity reduction. Finally, we generalise our solution to incorporate resistive, viscous
and electron inertia terms.
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1. Introduction

The Hall effect can significantly modify plasma behaviour [18, 42]. In particular, the
magnetic reconnection rates predicted by resistive magnetohydrodynamic models [27,38]
are too slow to explain reconnection in laboratory and astrophysical plasmas [1, 44, 46].
Numerical simulations demonstrate that including the Hall terms can speed up reconnec-
tion [2, 3, 12, 29]. Moreover, numerical results are consistent with analytical models that
quantify the role of the Hall effect in steady reconnection [24,33,41].

How quickly does a current sheet form in a weakly collisional plasma, and what is
the role of the Hall effect in the process? Singularity formation models, which identify
the sheet formation with the growth of the electric current density, make it possible to
describe the current sheet formation using exact analytical solutions. Exact self-similar
solutions in both ideal and resistive magnetohydrodynamics (MHD) have been found to
exhibit both exponential growth of the current density [7,39] and finite-time collapse to a
singularity [30]. The main limitation of these open-geometry solutions is that they do not
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predict the thickness of the emerging current sheet. However, the predicted exponential
behaviour was confirmed by numerical simulations [16,37], and analytical arguments show
that these solutions should evolve exponentially unless a singularity is driven by an imposed
pressure [21].

Here we investigate a self-similar solution for current sheet formation in Hall MHD, i.e.
when the Hall effect is included. The fundamental equations are presented in Section 2. In
Sections 3 and 4, we generalise previous studies [23] by considering a general set of initial
conditions and derive a criterion for the formation of a finite-time singularity. The new
solution reduces to the exponentially evolving MHD solution upon setting the Hall term to
zero. In Section 5, we discuss an alternative approach [32] to the singularity formation in
Hall MHD. In Section 6, we generalise our new solution to incorporate resistive, viscous
and electron inertia effects. We discuss the results in Section 7.

2. Generalised Ohm’s Law and MHD Equations

The incompressible MHD equations in dimensionless form are given by a generalised
Ohm’s law [28]

E+ v× B= ηJ+ di(J× B−∇pe) + d2
e [∂tJ+ (v · ∇)J+ (J · ∇)v] , (2.1)

the equation of motion

∂tv+ (v · ∇)v= −∇p+ J× B+ ν∇2v , (2.2)

the continuity equation
∇ · v= 0 , (2.3)

and electromagnetic equations

∇ · B= 0 , (2.4)

J=∇× B , (2.5)

∇× E= −∂tB , (2.6)

where ∂t denotes partial differentiation with respect to the time t, v is the plasma veloc-
ity, B the magnetic field, J the electric current density, E the electric field, and the total
plasma pressure p and electron pressure pe are scalar fields [43]. Here we use Gaussian
cgs units for consistency with other theoretical studies. The length and magnetic field are
scaled by typical reference values L and B0, the velocity v is normalised by the Alfvén speed
vA = B0/
p

4πρ where ρ ≃ min is the mass density (with the relation me ≪ mi between
the electron and ion masses and n their common particle number density), the time is nor-
malised by the Alfvén time tA = L/vA, and the assumed constant resistivity η and viscosity
ν by 4πLvA/c

2 and LvA, respectively (where c is the speed of light). The adoption of the
scalar viscosity term in the equation of motion, as opposed to a more general anisotropic
viscous stress tensor, is justified in the vicinity of a magnetic null where the magnetic field


