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Abstract. This article is devoted to analyze some ambiguities coming from a class of
sediment transport models. The models under consideration are governed by the cou-
pling between the shallow-water and the Exner equations. Since the PDE system turns
out to be an hyperbolic system in non conservative form, ambiguities may occur as
soon as the solution contains shock waves. To enforce a unique definition of the dis-
continuous solutions, we adopt the path-theory introduced by Dal Maso, LeFLoch and
Murat [18]. According to the path choices, we exhibit several shock definitions and we
prove that a shock with a constant propagation speed and a given left state may con-
nect an arbitrary right state. As a consequence, additional assumptions (coming from
physical considerations or other arguments) must be chosen to enforce a unique def-
inition. Moreover, we show that numerical ambiguities may still exist even when a
path is chosen to select the system’s solution.
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1 Introduction

The numerical simulation of sediment transport is essential in many applications. In-
deed, a river flow may carry wide volumes of gravels that seriously modify the river
bed. As a consequence, the impact of the sediments transport often cannot be neglected
when simulating river flows. For instance, water intakes of some industrial installations
may be disturbed by bed river modifications or sediment depositions. Recent sediment
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transport tools have been derived to perform numerical simulations for bedload. In gen-
eral, they are based on a suitable coupling between a solid phase model which governs
the evolution of the river bed and a shallow-water model to describe the river flow.

In the present work, we adopt the Exner model [21] to approximate the solid phase.
The Exner equation is derived by considering the mass conservation of the solid in the
interaction with the river flow. Neglecting dynamical effects, the Exner equation reads:

d1z+9xQ(h,u) =0, (1.1)

where h >0 is the water height, u is the height-averaged water speed and z is the height
of the river bed. Here, the empirical bedload function Q is a function of  and u, which
is related to the friction between the water and the sediment that forms the river bed.
In practice, many forms of Q are used depending on the physical setup of the consid-
ered problem. The reader is referred to [7, 19,20, 30] where several bedload formulas are
detailed. In this paper, we adopt two distinct bedload functions which are quite repre-
sentative of the different forms of Q generally considered for physical simulations. The
first one is the simple Grass law [24]:

Q(h,u) =eud, (1.2)

and the other one, based on the computation of bed stress, was proposed by Nielsen [31]:
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In both cases, € and 1. are (usually small) positive parameters and x; =max(0,x).

The full Exner model is then obtained by coupling the Exner equation (1.1) to the
shallow-water model for taking into account the topography’s variations. This full Exner

model therefore reads as follows:

0th+9,hu=0, (1.4a)
2

othu+ 9y (hu2+g%)+ghaxz:o, (1.4b)

0tz+0,Q(h,u) =0, (1.4¢)

where ¢ > 0 denotes the gravity constant.
To shorten the notations, let us rewrite the system (1.4a)-(1.4b)-(1.4c) in the following

condensed form:
oW+, F(W)+G(W)a,W=0,

where we have set:
hu

n
W= (hu), E(W)= hu2+ghz—2 , G(W)(
- Q(hu)

(1.5)
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