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Abstract. A counterexample is constructed. It confirms that the error of conforming
finite element solution is proportional to the coefficient jump, when solving interface
elliptic equations. The Scott-Zhang operator is applied to a nonconforming finite el-
ement. It is shown that the nonconforming finite element provides the optimal order
approximation in interpolation, in L2-projection, and in solving elliptic differential e-
quation, independent of the coefficient jump in the elliptic differential equation. Nu-
merical tests confirm the theoretical finding.
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1 Introduction

When studying the finite element solutions of elliptic boundary value problems with
discontinuous coefficients, i.e., interface problems, a useful tool is the weighted 12 pro-
jection operator, cf. [5,17,19]. To be specific, we consider a domain () which is subdivided
into finitely many, bounded, polygonal subdomains {Q);, i=1,---,]}, in d=2 or 3 space-
dimension. On each subdomain ();, we are given a positive constant w;, and we have a
quasi-uniform triangulation 7;(€);) of size h on Q;, cf. [7], shown by Fig. 1 as an example.
Thus each );, and (), is Lipschitz. We further assume the subdomain grids are match-
ing at the interface so that we can define conforming and nonconforming linear finite
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Figure 1: Constant weight each subdomain, and a matching grid.

element spaces on the combined grid 7;, over the domain ), [7]:

={veHj(Q)NC(Q)|v|x € Py, VKE Ty}, (1.1a)
= {v]v| Kk € P;, VK €T, vis continuous at all mid face dK and
0 at mid face KNI} (1.1b)

The weighed L? and semi-H! inner products are defined by
(4,9)12 (0 Zw / uvdx, (1.2a)
(u,0) HL(Q Zw/ Vu-Vodx. (1.2b)

The induced norms are denoted by ||-||;2 and ||, respectively. The full H ! weighted
normis ||-||3, =|-|3,, +||- |2, . The weighted L? projection Qf : L*(€)) — V}, is defined by

(Quuw0)12 ()= (,9)12(), YOE V) (1.3)
The following important theorem is proved by Bramble and Xu in 1991.

Theorem 1.1 (see [5]). If for all i, the (d—1)-dimensional Lebesgue measure of 0);N9QY is
positive, then for all u € H} (Q)),

1t = Qi1 2,00y + 11 Q51| g 2y < Chilog | u] ) (14)
where C is independent of {w;}.

Trying to show the necessity that all subdomains have a part of boundary 92, and
of the log term in the bound, several examples are constructed by Xu in [18]. However,
these examples are constructed by some limit argument where no specific function u
can be used in computation to show the sharpness of (1.4). Thus, some people are still



