Coefficient Jump-Independent Approximation of the Conforming and Nonconforming Finite Element Solutions

Shangyou Zhang*

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 21 January 2015; Accepted (in revised version) 30 December 2015

Abstract. A counterexample is constructed. It confirms that the error of conforming finite element solution is proportional to the coefficient jump, when solving interface elliptic equations. The Scott-Zhang operator is applied to a nonconforming finite element. It is shown that the nonconforming finite element provides the optimal order approximation in interpolation, in L^2 -projection, and in solving elliptic differential equation, independent of the coefficient jump in the elliptic differential equation. Numerical tests confirm the theoretical finding.

AMS subject classifications: 65N30, 65D05

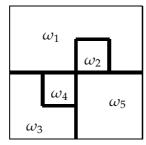
Key words: Jump coefficient, finite element, L^2 projection, weighted projection, Scott-Zhang operator.

1 Introduction

When studying the finite element solutions of elliptic boundary value problems with discontinuous coefficients, i.e., interface problems, a useful tool is the weighted L^2 projection operator, cf. [5,17,19]. To be specific, we consider a domain Ω which is subdivided into finitely many, bounded, polygonal subdomains $\{\Omega_i, i=1,\cdots,J\}$, in d=2 or 3 space-dimension. On each subdomain Ω_i , we are given a positive constant ω_i , and we have a quasi-uniform triangulation $\mathcal{T}_h(\Omega_i)$ of size h on Ω_i , cf. [7], shown by Fig. 1 as an example. Thus each Ω_i , and Ω , is Lipschitz. We further assume the subdomain grids are matching at the interface so that we can define conforming and nonconforming linear finite

Email: szhang@udel.edu (S. Y. Zhang)

^{*}Corresponding author.



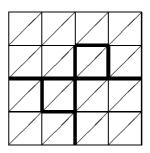


Figure 1: Constant weight each subdomain, and a matching grid.

element spaces on the combined grid \mathcal{T}_h over the domain Ω , [7]:

$$V_h = \{ v \in H_0^1(\Omega) \cap C(\Omega) | v|_K \in P_1, \forall K \in \mathcal{T}_h \}, \tag{1.1a}$$

 $V_h^{nc} = \{v | v | K \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | V_h^{nc} \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | V_h^{nc} \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | V_h^{nc} \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | V_h^{nc} \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = \{v | v | V_h^{nc} \in P_1, \forall K \in T_h, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = V_h^{nc} \in P_1, \forall K \in T_h^{nc} \in P_1, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = V_h^{nc} \in P_1, v \text{ is continuous at all mid face } \partial K \text{ and } V_h^{nc} = V_h^$

0 at mid face
$$\partial K \cap \partial \Omega$$
 (1.1b)

The weighed L^2 and semi- H^1 inner products are defined by

$$(u,v)_{L^2_{\omega}(\Omega)} = \sum_{i=1}^{J} \omega_i \int_{\Omega_i} uv dx,$$
(1.2a)

$$(u,v)_{H^1_{\omega}(\Omega)} = \sum_{i=1}^{J} \omega_i \int_{\Omega_i} \nabla u \cdot \nabla v dx.$$
 (1.2b)

The induced norms are denoted by $\|\cdot\|_{L^2_\omega}$ and $|\cdot|_{H^1_\omega}$, respectively. The full H^1 weighted norm is $\|\cdot\|^2_{H^1_\omega} = |\cdot|^2_{H^1_\omega} + \|\cdot\|^2_{L^2_\omega}$. The weighted L^2 projection $Q^\omega_h: L^2(\Omega) \mapsto V_h$ is defined by

$$(Q_h^{\omega}u,v)_{L_{\infty}^2(\Omega)} = (u,v)_{L_{\infty}^2(\Omega)}, \quad \forall v \in V_h.$$
 (1.3)

The following important theorem is proved by Bramble and Xu in 1991.

Theorem 1.1 (see [5]). *If for all* i, the (d-1)-dimensional Lebesgue measure of $\partial \Omega_i \cap \partial \Omega$ is positive, then for all $u \in H_0^1(\Omega)$,

$$||u - Q_h^{\omega} u||_{L_{\omega}^{2}(\Omega)} + h|Q_h^{\omega} u|_{H_{\omega}^{1}(\Omega)} \le Ch|\log h|^{1/2}|u|_{H_{\omega}^{1}(\Omega)}, \tag{1.4}$$

where C is independent of $\{\omega_i\}$.

Trying to show the necessity that all subdomains have a part of boundary $\partial\Omega$, and of the log term in the bound, several examples are constructed by Xu in [18]. However, these examples are constructed by some limit argument where no specific function u can be used in computation to show the sharpness of (1.4). Thus, some people are still