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Abstract. In this paper, we consider a least squares nonconforming finite element of
low order for solving the transport equations. We give a detailed overview on the sta-
bility and the convergence properties of our considered methods in the stability norm.
Moreover, we derive residual type a posteriori error estimates for the least squares
nonconforming finite element methods under H−1-norm, which can be used as the er-
ror indicators to guide the mesh refinement procedure in the adaptive finite element
method. The theoretical results are supported by a series of numerical experiments.
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1 Introduction

The transport equations are solved in industrial applications in order to determine the
power distribution of neutrons or photons in nuclear reactors. In particular, the neu-
tron transport equations have important applications in nuclear medicine and radiation
medicine. It is well known that the standard Galerkin approximation to these equations
leads to oscillations when non-smooth behavior of the unknown variables are not prop-
erly resolved. To stabilize this phenomenon, several well-established techniques have
been proposed and analyzed in a conforming setting (e.g., least squares method [15, 16],
finite volume method [24], residual free bubbles method [6]) as well as in a discontinuous
setting (e.g., the discontinuous Galerkin method analyzed in [2, 19, 22]).

In this paper, we are interested in least squares nonconforming finite elements such
as the Crouzeix-Raviart finite element. This finite element possesses various interesting
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features. First, the degrees of freedom are localized at the mesh faces, thereby leading
to efficient communication and parallelization. Second, Crouzeix-Raviart finite element
method has close links with finite volume box schemes; see, e.g., [11, 12] for Darcy’s
equations and [14,17,18,20,25] for advection-diffusion equations. This property is useful
to reconstruct locally the diffusive flux in problems where conservatively properties are
important, e.g., pollutant transport. Finally, keeping the mesh fixed, the Crouzeix-Raviart
finite element space has approximately two times less degrees of freedom than the first-
order Discontinuous Galerkin finite element space.

The purpose of the present work is to propose and analyze a least squares noncon-
forming finite element method for transport equations. We give a detailed overview on
the stability and the convergence properties of our considered methods in the stability
norm. Moreover, we derive residual type a posteriori error estimates for the least squares
nonconforming finite element methods in H−1-norm. Our a posteriori error bound may
serve as a refinement indicator within an adaptive mesh-refining algorithm.

The remainder of this paper is organized as following. In Section 2 some necessary
notations and the least squares nonconforming finite element discretizations of transport
equations are introduced. Here, we also describe assumptions on the finite element s-
paces to be fulfilled. In Section 3 we provide the coerciveness of the bilinear form related
to the discretizations and study a priori and a posteriori error analysis of the least squares
nonconforming finite element method. In section 4 we provide several numerical experi-
ments which support our theory. Finally, in Section 5 we summarize the work presented
in this article and draw some conclusions.

2 Notations and preliminaries

In this paper, we shall use the standard notation for Sobolev spaces Wm,p(Ω) and their
associated norms and seminorms in [1]. For p=2, We denote Hm(Ω)=Wm,p(Ω), ‖·‖m,Ω=
‖·‖m,2,Ω and (·,·) for the standard L2 inner product. We shall use the letter C to denote a
positive constant which may stand for different values at its different occurrences and is
independent of the mesh parameters.

In the paper, we consider transport problem: find u∈H(L,Ω) such that

Lu≡a·∇u+bu= f in Ω, (2.1a)

u= g on Γ−, (2.1b)

where H(L,Ω)={v∈L2(Ω):Lv∈L2(Ω)} denotes the graph space of the partial differential
operator L in L2(Ω). Here Ω⊂R

2 is a bounded domain, Γ−={x∈∂Ω :a·n(x)<0} is the
inflow boundary and n(x) is the outward unit normal at the point x∈ ∂Ω. Analogously,
we define the outflow boundary Γ+= {x∈ ∂Ω : a·n(x)≥ 0}. Without loss generality we
shall suppose that a≡ (a1,a2) is a non-zeros constant vector. If a is not a constant vector,
the following analysis can be extended to the smooth and bounded function vector by
using the methods of [3,10,19]. f , g and b are bounded functions. It will be assumed that


