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Abstract. In this paper, we investigate the mean-square convergence of the split-step
6-scheme for nonlinear stochastic differential equations with jumps. Under some stan-
dard assumptions, we rigorously prove that the strong rate of convergence of the split-
step §-scheme in strong sense is one half. Some numerical experiments are carried out
to assert our theoretical result.
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1 Introduction

We consider jump-diffusion It stochastic differential equations (JSDEs) of the form

X(0.)= X, (1.1)

{ dX(t)=f(X(t-))dt+g(X(t-))dW(t)+h(X(t-))dN(t), te(0,T],
where X (f_):=limg_;_ X(s), f:R"—R"™, g:R™ —R™* and h:R"™ —-R™, m,dcIN*t. Here
W(t) is a standard d-dimensional Brownian motion, and N(t) is a scalar Poisson process
(independent of W(t)) with intensity A >0, both defined on a complete probability space
(Q), F,P) with a filtration {F; };>0 satisfying the usual conditions (i.e., it is increasing and
right continuous and F contains all IP-null sets). Extension of our work to vector-valued
jumps with independent entries is straightforward.

Stochastic differential equations (SDEs) have been widely used in many areas such as
chemistry, physics, engineering, biology and mathematical finance to provide models of
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dynamical systems affected by uncertainty factors. When it is the case that a stochastic
system is also influenced by some randomly occurring impulses it is often desirable to use
a jump-diffusion stochastic model such as (1.1) to characterize these burst phenomena.
For more practical applications, one can refer to [1,4,5,7,24].

Since dynamical systems modeled by SDEs rarely admit known explicit solutions,
seeking accurate numerical solutions has become a rapidly growing research area. In re-
cent years, much progress has been made in developing numerical methods for solving
SDEs [6,8,9,13-15,17,21,22,25]. However, compared with the development of numerical
methods for SDEs, numerical methods for solving JSDEs are far from undeveloped, and
thus effective and efficient numerical methods are urgently needed. In addition, most of
the existing numerical methods for (1.1) are based on globally Lipschitz conditions and
linear growth conditions (see, e.g., [1,2,11,18,19,23]) on the coefficients f, g and h. How-
ever, these conditions may be too restrictive, which may exclude lots of useful models
to be considered, such as some nonlinear problems with super-linearly growing condi-
tion coefficients. To relax the conditions, a popular choice is to use one-sided Lipschitz
condition on the drift coefficient and globally Lipschitz conditions on the diffusion and
jump coefficients [10,12]. Motivated by the above discussions, we aim to design solvers
for (1.1) with weaker conditions on the coefficients f, ¢ and h. More precisely, we will
theoretically prove that the split-step 6-scheme (see Section 3), admits a one half rate of
strong convergence, under the conditions that the drift coefficient f satisfies one-sided
Lipschitz condition and the diffusion coefficient ¢ and jump coefficient / satisfy the glob-
ally Lipschitz condition.

The rest of this paper is organized as follows. In Section 2, we introduce notations and
assumptions. The split-step 6-scheme is introduced in Section 3. In Section 4, we rigor-
ously obtain the boundedness of the solutions of (1.1) and (3.1a). The boundedness will
play a key role in our proof of the convergence error estimates of the split-step 6-scheme.
Strong convergence estimates are established in Section 5. In Section 6 we present nu-
merical results to validate our theoretical findings. Finally some conclusions are given in
Section 7.

2 Notations and assumptions

Throughout the paper, (-,-) denotes the scalar inner product in R” or R"*%, and |-| is the
associated Euclidean vector norm or Frobenius matrix norm.

We assume the drift coefficient f satisfies the local Lipschitz condition, i.e., for each
R>0,

()= f()I” <Lrlx—yl? (2.1)

for all x,y € R™ with |x|V|y| <R, and the one-side Lipschitz condition

<x—y,f(x)—f(y)>§[<1]x—y|2 for all x,yeR"™, (2.2)



