The Unique Solvability and Approximation of BVP for a Nonlinear Fourth Order Kirchhoff Type Equation

Dang Quang A ${ }^{1, *}$ and Nguyen Thanh Huong ${ }^{2}$
${ }^{1}$ Centre for Informatics and Computing, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
${ }^{2}$ College of Sciences, Thai Nguyen University, Thai Nguyen, Vietnam.

Received 23 October 2017; Accepted (in revised version) 25 January 2018.

Abstract

We reduce a nonlinear fourth order equation of Kirchhoff type to an operator equation for a nonlinear term and establish sufficient conditions for the unique solvability of the original problem. Approximate solutions of the problem are derived by a fast converging iterative method. Numerical examples confirm theoretical results and demonstrate the efficiency of the approach used.

AMS subject classifications: 34B15, 34L30, 65L10, 65L12
Key words: Beam equation, Kirchhoff type equation, nonlinear equation, unique solvability, iterative method.

1. Introduction

We consider the following boundary value problem (BVP):

$$
\begin{align*}
& u^{(4)}(x)-M\left(\int_{0}^{L}\left|u^{\prime}(s)\right|^{2} d s\right) u^{\prime \prime}(x) \tag{1.1}\\
& \quad=f\left(x, u(x), u^{\prime}(x), u^{\prime \prime}(x), u^{\prime \prime \prime}(x)\right), \quad 0<x<L \\
& u(0)=u(L)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(L)=0
\end{align*}
$$

which models the equilibrium of elastic beams. The term u in this equation denotes the deflection of an elastic beam of the length L and $f:[0, L] \times \mathbb{R}^{4} \rightarrow \mathbb{R}$ and $M: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ are continuous real valued functions. The integro-differential equation (1.1) is called the beam equation of the Kirchhoff type - cf. Ref. [10].

Numerous boundary value problems for the nonlinear equation

$$
u^{(4)}(x)=f\left(x, u(x), u^{\prime}(x), u^{\prime \prime}(x), u^{\prime \prime \prime}(x)\right)
$$

[^0] 2806@gmail. com (Nguyen Thanh Huong)
have been studied by different methods, including Leray-Schauder degree theory [11], Schauder fixed point theorem with lower and upper solutions [2, 6, 7, 9], Fourier analysis [8], and Banach fixed point theorem [5]. In addition, the boundary value problems for integro-differential equations of Kirchhoff type
\[

$$
\begin{array}{ll}
u^{(4)}(x)-M\left(\int_{0}^{L}\left|u^{\prime}(s)\right|^{2} d s\right) u^{\prime \prime}(x)=f(x, u(x)), & 0<x<L, \\
u^{(4)}(x)-M\left(\int_{0}^{L}\left|u^{\prime}(s)\right|^{2} d s\right) u^{\prime \prime}(x)=f\left(x, u(x), u^{\prime}(x)\right), & 0<x<L,
\end{array}
$$
\]

have been treated by variational and fixed point theory methods [12-15]. The unique solvability and iterative methods for Eq. (1.1) in the cases $L=\pi, M(x)=(2 x) / \pi, f=p(x)+$ $\epsilon u^{\prime \prime}(x)$ and $M(x)=0, f=f\left(x, u(x), u^{\prime \prime}(x)\right)$ are, respectively, investigated in Refs. [3] and [4]. Amster and Cárdenas Alzate [1] studied the problem

$$
\begin{aligned}
& u^{(4)}(x)-A u^{\prime \prime}(x)=f(x, u(x)), \quad 0<x<L, \\
& u(0)=a, \quad u(L)=b, \\
& u^{\prime \prime}(0)=\alpha, \quad u^{\prime \prime}(L)=\beta,
\end{aligned}
$$

by Leray-Schauder theorem under the assumption

$$
\begin{equation*}
\frac{f(x, u)-f(x, v)}{u-v} \leq \bar{K}<\left(\frac{\pi}{L}\right)^{2}\left(\left(\frac{\pi}{L}\right)^{2}+A\right), \tag{1.2}
\end{equation*}
$$

where $\bar{K}>0$ and A are constants. They also considered the equation

$$
\begin{aligned}
& u^{(4)}(x)-A \int_{0}^{L}\left|u^{\prime}(s)\right|^{2} d s u^{\prime \prime}(x)=f(x, u(x)), \quad 0<x<L, \\
& u(0)=a, u(L)=b, \quad u^{\prime \prime}(0)=0, u^{\prime \prime}(L)=0,
\end{aligned}
$$

under the assumptions that A is a constant and

$$
\begin{equation*}
f(x, u)=\bar{f}(x, u)+f_{0}(x, u) \tag{1.3}
\end{equation*}
$$

with \bar{f} and f_{0} satisfying the conditions

$$
\begin{aligned}
& \frac{\bar{f}(x, u)-\bar{f}(x, v)}{u-v} \leq \bar{K}<\left(\frac{\pi}{L}\right)^{4}, \\
& \left|f_{0}(x, u)\right| \leq \bar{k}|u|+l, \quad \bar{k}<\left(\frac{\pi}{L}\right)^{4}-\bar{K}, \quad \bar{k}, l \in \mathbb{R} .
\end{aligned}
$$

Recently, a novel method for fourth order nonlinear boundary problems based on their reduction to an operator equation for the right-hand side function f has been developed - cf. Refs. [4,5]. In Section 2 we apply this method to the problem (1.1) and establish its unique solvability. Section 3 deals with an iterative method for the problem (1.1) and discusses a few numerical examples. It is worth mentioning that the right-hand side f used in these examples may not satisfy the requirements of [1].

[^0]: *Corresponding author. Email addresses: dangquanga@cic. vast.vn (Dang Quang A), nguyenthanhhuong

