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Abstract. In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s
mean value theorem of the kind
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where 0 <a <1, is established. Such expression is precisely the classical Taylor’s and
Cauchy’s mean value theorem in the particular case «=1. In addition, detailed expres-
sions for R} (&,n7) and Ty (¢,n) involving the sequential Caputo fractional derivative
are also given.
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1 Introduction

The ordinary Taylor’s formula has been generalized by many authors. Riemann [1] had
already written a formal version of the generalized Taylor’s series:
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where D, is the Riemann-Liouville fractional integral of order m+r.
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Afterwards, Watanable [2] obtained the following relation:
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with m <a,a <x9<x,and

R = (D" D)y [ ) O 0

where D51" is the Riemann-Liouville fractional derivative of order a+n.
On the other hand, a variant of the generalized Taylor’s series was given by Dzherbashyan
and Nersesyan [3]. For f having all of the required continuous derivatives, they obtained
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where 0<x,ap,a1,...,0 is an increasing sequence of real numbers such that 0 <aj—aj_1 <
1,k=1,..,m and D(®n) f = [}~ (@t pliaia ¢

Under certain condltlons for f and a € [0,1], Trujillo et al. [4] introduce the following
generalized Taylor’s mean value theorem:
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and the sequential fractional Riemann-Liouville derivative is denoted by
D}*=D}-Dj-...-Dy (n—times).

Recently, Odibat and Shawagfeh [5] obtain a new generalized Taylor’s mean value
theorem of this kind
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with a <¢ <x, where D/* is the sequential fractional Caputo derivative.

In 2005, Pecaric et al. [6] deduced the Cauchy type mean value theorem for the se-
quence fractional Riemann-Liouville derivative from known mean value theorem of the
Lagrange type.



