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Abstract. The stability and natural vibration of a standing tapered vertical column
under its own weight are studied. Exact stability criteria are found for the pointy
column and numerical stability boundaries are determined for the blunt tipped col-
umn. For vibrations we use an accurate, efficient initial value numerical method for
the first three frequencies. Four kinds of columns with linear taper are considered.
Both the taper and the cross section shape of the column have large influences on
the vibration frequencies. It is found that gravity decreases the frequency while the
degree of taper may increase or decrease frequency. Vibrations may occur in two
different planes.
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1 Introduction

The standing column under the influence of gravity models towers, tall buildings,
free-standing poles and antennas. The stability of a uniform standing column was
solved in the nineteenth century by Greenhill [1] using what is now known as Bessel
functions. See Wang et al. [2] for a review on column stability. The vibration of a
uniform standing column was recently studied by Virgin et al. [3], whose experimental
results confirm numerical predictions superbly.

For strength reasons the standing column is usually not uniform but tapered, wide
at base and narrow at the top. Dinnik [4] studied analytically the stability of a power-
law tapered standing column, whose tip must decrease into a sharp point. For other
cases numerical or semi-numerical methods, such as the Ritz method [5, 6], finite ele-
ments [7], series expansions [8], integral equations [9] must be used.
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There have been many papers on the vibration of a tapered beam without a com-
pressive axial force. See e.g., [10]. However, to the author’s knowledge, there are no
reports on the important problem of the vibration of a standing tapered column which
is affected by gravity. Since no analytic solutions exist when gravity is present, we
shall use a highly efficient initial value method adapted from Barasch and Chen [11]
and Wang [12].

2 Formulation

The equation for small vibrations of a non-uniform Euler-Bernoulli column subjected
to an axial force can be derived by considering an elemental segment or from energy
considerations, e.g., [13]
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Here (x′, y′) are the longitudinal and transverse coordinates of the column (origin at
the base), EI is the flexural rigidity, F is the axial force, ρ is the mass per length and t′

is the time. Now for a free standing column of height L

F = g
∫ L

x′
ρ(x′)dx′, (2.2)

where g is the gravitational acceleration. Let

EI(x′) = EI0l(x′), ρ(x′) = ρ0r(x′), (2.3)

where EI0 is the maximum of EI and ρ0 is the maximum of ρ, both occurring at the
base at x′ = 0. Consider a harmonic vibration with frequency ω′

y′ = w′(x′)eiω′t′ . (2.4)

Normalize all lengths by the column length L, the time by L2
√
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primes. Eq. (2.1) becomes
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Here
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are non-dimensional parameters representing gravity force and frequency respectively.
At the base of the beam, the column is clamped

w(0) = 0,
dw
dx

(0) = 0. (2.7)


