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Abstract. A frictional contact model accounting the wear of the contact surface caused
by the friction and the mechanical damage of the material is considered. The deformable
body is comprised of a viscoelastic material with long memory and the process is assumed
to be quasistatic. The mechanical damage caused by tension or compression is included
in the constitutive law and the damage function is modelled by a nonlinear parabolic
inclusion. The wear is contained in the contact boundary conditions and wear function
is modelled by a differential equation. Variational formulation of the model is governed
by a coupled system consisting of a history-dependent variational inequality, a nonlinear
parabolic variational inequality and an integral equation. A fully discrete scheme of the
problem is studied and optimal error estimates are derived for the linear finite element
method. Numerical simulations illustrate the model behaviour.
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1. Introduction

In this paper, we focus on a frictional contact problem between a viscoelastic body and
a foundation. The effect due to the damage of the material, along with the wear caused by
the friction, is considered. Frictional contact between a deformable body and a foundation
is a kind of special phenomenon which occurs in diverse forms in various physical settings.
In any particular case, the behavior of the body is affected by different factors, including
the constitutive law of the body, the friction law describing the contact, the temperature
influence and piezoelectricity effects. In particular, the reader can consult [3,5] for thermo-
piezoelectric materials contact problem. Therefore, various models have been developed
in the contact mechanics. The decrease in the load-bearing capacity due to the appearance
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and growth of internal cracks have been spotted for a variety of materials such as concrete.
A lot of efforts have been spent on the study of this problem since it exerts a deep influence
on the life-span of the designed components and structures — cf. [1,13,22]. On the other
hand, contact processes are often accompanied by material damage and the corresponding
mathematical models along with related variational problems are established in [7, 15,
21]. Nevertheless, there are only a few numerical studies considering the effect of the
internal damage on the contact processes — cf. [8, 9, 16]. As the contact process evolves,
the contacting surfaces also evolve via their wear. Usually, sliding systems wear slowly but
steadily. The corresponding models with wear have been studied in [20,24].

In this work we consider numerical approximation of a system coupled by a general
history-dependent variational inequality, a nonlinear parabolic variational inequality and
an integral equation which models a quasistatic frictional contact problem with wear, dam-
age and long memory. To the best of author’s knowledge, this is the first paper devoted to
numerical analysis of variational inequalities in contact problems with wear and damage.
The model is nonstandard and since its variational formulation leads to two variational in-
equalities and an integral equation, the proofs of the corresponding results are technically
complicated. We establish the existence and uniqueness result and use a numerical method
for solving the system arising. Optimal error estimates for the scheme are derived under
certain solution regularity assumptions.

We first study the following frictional contact problems. Let Ω be an open bounded
subset of Rd , d = 2,3 occupied by a viscoelastic body. The boundary Γ of Ω is assumed to
be Lipschitz continuous and divided into three mutually disjoint parts ΓD, ΓN and ΓC such
that the measure of ΓD, denoted m(ΓD), is positive. Assume that the body is clamped on
ΓD, and the displacement field vanishes there. Time-dependent surface traction of density
f N act on ΓN and time-dependent volume forces of density f 0 act in Ω. The evolutionary
process of the mechanical state of the body is restricted to the time interval (0, T ) with
T > 0.

The notations u = (ui), σ = (σi j) and ǫ(u) = (ǫi j(u)) are used for the displacement
vector, the stress tensor and the linearised strain tensor, respectively. For the sake of sim-
plicity, we do not indicate explicitly the dependence of variables on the spatial variable x .
The components of the linearised strain tensor ǫ(u) are ǫi j(u) = (1/2)(ui, j + u j,i), where
ui, j = ∂ ui/∂ x j. The indices i, j, k, l run between 1 and d and, unless stated otherwise,
the summation convention over repeated indices is used. An index following a comma
indicates a partial derivative with respect to the corresponding component of the spatial
variable x . A superscript prime of a variable stands for the time derivative of the corre-
sponding variable. The outward unit normal to ∂Ω is denoted by ν and we write vν and
vτ for the normal and tangential components of v on ∂Ω, i.e. vν = v ·ν and vτ = v − vνν.
The normal and tangential components of the stress field σ on the boundary are defined
by σν = (σν) · ν and στ = σν− σνν, respectively. The symbol Sd refers to the space of
second order symmetric tensors on Rd .

The mathematical model of the contact problem is stated as follows.

Problem 1.1. Find a displacement field u : Ω× (0, T )→ Rd , a stress field σ : Ω× (0, T )→
S

d , a damage field ζ : Ω× (0, T )→ R and a wear function w : ΓC × (0, T )→ R+ such that


