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Abstract. It was proved by Graham and Witten in 1999 that conformal invariants of
submanifolds can be obtained via volume renormalization of minimal surfaces in con-
formally compact Einstein manifolds. The conformal invariant of a submanifold Σ is
contained in the volume expansion of the minimal surface which is asymptotic to Σ

when the minimal surface approaches the conformaly infinity. In the paper we give
the explicit expression of Graham-Witten’s conformal invariant for closed four dimen-
sional submanifolds and find critical points of the conformal invariant in the case of
Euclidean ambient spaces.
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1 Introduction

In the introduction we give a description of the main result and some related background
of the paper. The terminologies used in the introduction will be recalled in the next
section.

Let (Xd+1,g+) be a conformally compact Einstein manifold and (Md,[gcon f in f ]) its
conformal infinity. A given metric g ∈ [gcon f in f ] uniquely determines a special defining

function r on a neighborhood of M in X, upon to the conditions that (r2g+)|M = g and
|dr|r2 g+=1 [12]. We denote gc=r2g+. With the special defining function r, one can identi-

fy M×[0,ǫ), for some ǫ>0, with a neighborhood of M in X. We denote the neighborhood
by Xǫ, and the identification

M×[0,ǫ)∼=Xǫ (1.1)
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is defined as follows: (p,r)∈M×[0,ǫ) corresponds to the point obtained by following the
flow of ∇gc r emanating from p for r units of time. gc on M×[0,ǫ) takes the form of

gc =dr2+ g̃, (1.2)

where g̃ is a 1-parameter family of metrics on M with the parameter r. By solving the
Einstein equation Ric(g+)=−dg+, for d odd the expansion of g̃ is of the form

g̃= g(0)+g(2)r2+(even powers)+g(d−1)rd−1+g(d)rd+··· , (1.3)

where g(j) are tensors on M and the dots stand for terms vanishing to higher order. For j
even and 0≤ j≤d−1, the tensor g(j) is locally formally determined by the boundary value
g(0)= g, but g(d) is formally undetermined; for d even the expansion is

g̃= g(0)+g(2)r2+(even powers)+hrd logr+g(d)rd+··· , (1.4)

where g(j) and h are locally formally determined for j even and 0≤ j≤d−2 by g(0)= g.
The main object of the paper is a minimal surface in the conformally compact Einstein

manifold (X,g+) with prescribed asymptotic boundary. Let Σn be a submanifold of M
and Yn+1 →֒ (X,g+) be a minimal surface which is asymptotic to Σ. The problem of
existence and regularity of such minimal surfaces has been studied by Anderson [3, 4],
Hardt-Lin [27], Lin [30–32], Tonegawa [35], Han-Jiang [25] and Han-Shen-Wang [26]. We
denote

g= g|Σ. (1.5)

The connections with respect to (M,g) and (Σ,g) will be denoted by ∇ and ∇ respective-
ly, and the connection of the normal bundle T⊥Σ of the immersion Σ →֒ (Md,g) will be
denoted by ∇⊥.

Graham and Witten [16] have introduced a natural and useful way to reformulate Y.
Namely, near the boundary M they express Y as a graph over Σ×[0,ǫ) and expand the
height functions of the graph in r. Near a point of Σn, let (xi,yα) be a local coordinate
chart of Md, where 1≤ i≤n and n+1≤α≤d, so that

Σ={y=0}; g(
∂

∂xi
,

∂

∂yα
)=0 on Σ ,∀ i,α. (1.6)

Note that via the identification (1.1), one has an extension of the coordinates (xi,yα) into
X, which together with r forms a local coordinate chart of X. The minimal surface Y can
be written as a graph {yα =uα(x,r)}. That is, near the boundary Y=(xi,uα(x,r),r).

Graham and Witten [16] proved that for n odd

u=u(2)r2+(even powers)+u(n+1)rn+1+u(n+2)rn+2+··· , (1.7)

and for n even

u=u(2)r2+(even powers)+u(n)rn+wnrn+2 logr+u(n+2)rn+2+··· , (1.8)


