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Abstract. In this paper, we present sharp bounds for some bivariate means derived
from the lemniscatic mean by Neuman, in terms of the harmonic, arithmetic and con-
traharmonic means.
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1 Introduction

For a,b>0 with a 6= b, the lemniscate mean LM (see [3, (2.7)] and [2, P. 259]) is defined as
follows:

LM(a,b)=
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where
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are Gauss arc lemniscate sine and the hyperbolic arc lemniscate sine functions respec-
tively (see [23, Ch.1]). Following Neuman [19, Proposition 3.1], another pair of the arc
lemniscate functions, Gauss arc lemniscate tangent function and the hyperbolic arc lem-
niscate tangent function arctlh are defined by
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and

arctlhx=arcslh

(

x
4
√

1−x4

)

, |x|<1, (1.5)

respectively.
The limiting values of the above four functions are (see [21, 19.20.2], [20])
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where Γ(x) is the classical Euler gamma function.
For more information on the arc lemniscate functions, the reader may see references

[1, 4, 5, 8, 13, 18, 24–26].
Let
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a+b

2
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2
, (1.7)

be the geometric, arithmetic, and quadratic means of two distinct positive real numbers
a and b, respectively. The means derived from the lemniscatic mean are defined by Neu-
man as follows [19, (6.4)]:

LMGA = LMGA(a,b)= LM(G,A),

LMAG = LMAG(a,b)= LM(A,G),

LMAQ= LMAQ(a,b)= LM(A,Q),

LMQA= LMQA(a,b)= LM(Q,A).

(1.8)

Other means used in this paper are the harmonic mean H and the contraharmonic
mean C which are defined as follows

H=
2ab

a+b
, C=

a2+b2

a+b
. (1.9)


