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The Upper Semicontinuity of Random Attractor
for Stochastic Suspension Bridge Equation*
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Abstract Based on the existence of pullback attractors for stochastic suspen-
sion bridge in [7], in the paper, we further investigate the upper semicontinuity
of pullback attractors for the problem.
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1. Introduction
Let (Q, F,P) be a probability space, where
Q= {w = (wl’w27 T 7wm) S C(R, Rm) : W(O) = O}a

is endowed with compact open topology, F is the P-completion of Borel o-algebra
on €2, and PP is the corresponding Wiener measure. Define the time shift via

() =w(-+t) —w(t), teR, we.

Thus, (2, F,P, (0;)ier) is an ergodic metric dynamical system.

In this paper, we are devoted to considering the upper semicontinuity of random
attractors for the following suspension bridge equations with linear memory and
additive white noise:

Ui+ A%+ A%y + kut + (p— B Va2 ) du+ [ u(s) A2 (ult)
—u(t —s))ds = g(z) + a3 7", hiW;, © € Ut > T,

u(z,t) = Au(z,t) =0, zedU, t<T, TR,

u(va) :Uo(l'),ut(l',’f) :ul(x)a zeU,

where U is a bounded open set of R? with a smooth boundary oU, u = u(z,t) is
a real-valued function on U x [r,4+00) and accounts for the downward deflection of
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the bridge in the vertical plane, u™ namely stands for its positive part,

U, if u >0,

0, if u <0.

k > 0 denotes the spring constant, and « is a positive constant. The real constant p
represents the axial force acting at the end of the road bed of the bridge in the refer-
ence configuration. Namely, p is negative when the bridge is stretched, positive when
compressed, h;(x) € H§(U)NH*(U), (j =1,2,3,--- ,m), {W;}~, are independent
two-sided real-valued Wiener processes on (£, §,P). We identify w(t) with (W1 (?),
Wa(t), -, Wi(t)), i e,

w(t) = (Wl(t)7W2(t)7"' an(t))vt eR.

The memory kernel function p(s) and g(z) satisfy the following conditions:

(H1) : pls) € C\R) N IA(RY), u(s) > 0, p'(s) + 6p(s) < 0, Vs € R and
some § > 0.

(Hy): g€ HnH2(U).

Following Dafermos [1], we introduce a Hilbert “history” space

Rz = Li,(RT, H(U) N Hy (V)

with the inner product

(s 722 = / 1(s) (A (s), Ana(s)) ds, Vi, m € Ry,

and new variables
n(t,x,s) = u(t,z) — u(t — s, x).
To facilitate easy calculation, we take 3 = 1. Then, we set £ = (H*(U) N
H(U)) x L*(U) x Ryu2, Z = (u,ug,m)’. Then, the system (1.1) is equivalent to
the following initial value problem in the Hilbert space E :

Zy=L(Z)+ N(Z,t,W(t)), zelU t>r1, seRT, (1.2)
Z(1) = Zr = (uo(z),u1(z),no(x,8)), (z,5) €U xR, .
where
u(t,,x) =nt,7,z,s) =n(t,7,2,0)=0, €U, t > 1, s € RT,
Au(t,,z) = An(t,7,2,8) = An(t,7,2,0) =0, 2 € OU, t <7, s € RT, (1.3)
u(r,z) = u(r, 7,x) = w7, x), u(7,2) = w7, 7,2) = u1(x), xeU, ’
n(r,z,8) =no(x,s) =u(r,z) —u(t — s, ), (z,5) € U x RT,
Ut
L(Z) = | —A%u— A%u — [ () A%(s)ds | - (14)
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