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Analysis of the Dynamics of a Predator-prey
Model with Holling Functional Response
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Abstract A diffusive predator-prey system with Holling functional response
is considered. Firstly, existence of positive equilibrium of this reaction diffu-
sion model under Neumann boundary condition is obtained. Meanwhile, the
existence conditions for Turing instability and Hopf bifurcations of a system
with Holling II functional response are established. Next, the existence of the
hydra effect is demonstrated, when the system is undergoing non-homogeneous
steady-state solutions. Finally, numerical simulations are illustrated to sup-
port our theory results.
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1. Introduction

Dynamics of predator-prey model is one of important subjects in mathematical
ecology, and some important results have been studied and derived by many re-
searchers [8, 10, 15, 18, 19, 21–23]. The earliest population can be traced back to
1798, the Malthus model proposed by T. R. Malthus. In 1838, the Dutch biologist
P. Verhulst introduced the largest population that the natural environment could
withstand on the basis of this model, and proposed the famous Logistic model. In
1948, P. H. Leslie and J. C. Gower extended the Logistic model, and proposed the
Leslie-Gower system model. With the development, people gradually discovered
that the functional response function should not be a simple linear function, and a
more reasonable functional response function should be nonlinear and bounded. C.
S. Holling proposed three bounded functional response functions [4, 6, 7, 9, 13, 24].
The results of the above population research include stability, the existence of limit
cycles, bifurcation and other issues [5, 11,14,20].

The hydra effect is a phenomenon in which population balance or time average
density increases when the mortality rate of the population increases [1,2]. In [1], the
three key mechanisms underlying the hydra effect were proposed by Abrams. The
two latter mechanisms were investigated in [12]. However, this mechanism has been
determined in the theoretical research conducted by [16], in which they analyzed
predator-prey models with Holling II and III functional responses. Regarding the
hydra effect, the paper by Strevens and Bonsall [17] discussed harvesting strategies
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in a host-parasitic wasp complex population system. In [3], a diffusive predator-prey
model with functional response function was studied ∂R

∂t = DR
∂2R
∂x2 + rR(1− R

K )− F (R)C,

∂C
∂t = DC

∂2C
∂x2 + efRCF (R)C −mCC − qCC2,

(1.1)

where

F (R) =
aCRR

n

1 + aCRThCRRn
. (1.2)

The authors have shown the occurrence of the hydra effect in some of its steady-state
dynamics through numerical simulations. Substituting equation (1.2) into system
(1.1), system (1.3) can be obtained. In this paper, we will analyze the dynamic
properties of the model (1.3). The system is as follows: ∂R

∂t = DR
∂2R
∂x2 + rR(1− R

K )− aCRR
nC

1+aCRThCRRn ,

∂C
∂t = DC

∂2C
∂x2 + efRCaCRR

nC
1+aCRThCRRn −mCC − qCC2,

(1.3)

and the Neumann boundary condition

Rx(x, t) = Cx(x, t) = 0, Rx(l, t) = Cx(l, t) = 0, t > 0,

R(x, 0) = R0(x) ≥ 0, C(x, 0) = C0(x) ≥ 0, x ∈ [0, l],
(1.4)

where R and C are the density of the prey and the density of the predator respec-
tively, and r is the inherent growth rate of the prey R. K is the environmental
capacity of the prey R. mC is the per capita mortality of the species C that is not
related to density, and qC is per capita mortality of species C related to density. DR

and DC are the diffusion coefficients of species R and C respectively, and efRC is
the conversion coefficient from species R to species C. aCR is the attack coefficient
of species C against species R, and ThCR is the effect time of species C on species
R. All parameters are strictly positive constants.

In this paper, we analyze the Turing instability and the existence of Hopf bifur-
cations of the system (1.3), when n = 1. The existence of the hydra effect is shown,
when the system (1.3) is undergoing the state bifurcation. The structure of this
article is arranged as follows: In Section 2, by analyzing the characteristic equation
of the coexistence balance system, we clarity conditions for the existence of Turing
unstable and Hopf bifurcations of a diffusive predator-prey system. In addition, we
also determine the critical Turing bifurcation and Turing instability curves in the
parameter plane. Then, numerical simulations are explained to support the exis-
tence of the hydra effect and other theoretical analysis results in Section 3. Finally,
in Section 4, we discuss and conclude.

2. Turing instability and Hopf bifurcation analysis

2.1. Existence of positive equilibrium

In this section, we discuss the existence of the positive equilibrium point of system
(1.1). In the system (1.1), we set f(R,C) = rR(1− R

K )− F (R)C = 0,

g(R,C) = efRCF (R)C −mCC − qCC2 = 0.
(2.1)
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