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Abstract. We present a novel compression algorithm for 2D scientific data and im-
ages based on exponentially-convergent adaptive higher-order finite element meth-
ods (FEM). So far, FEM has been used mainly for the solution of partial differential
equations (PDE), but we show that it can be applied to data and image compression
easily. The adaptive compression algorithm is trivial compared to adaptive FEM al-
gorithms for PDE since the error estimation step is not present. The method attains
extremely high compression rates and is able to compress a data set or an image
with any prescribed error tolerance. Compressed data and images are stored in the
standard FEM format, which makes it possible to analyze them using standard PDE
visualization software. Numerical examples are shown. The method is presented
in such a way that it can be understood by readers who may not be experts of the
finite element method.
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1 Introduction

The finite element method (FEM) is the most widely used numerical method for the
solution of partial differential equations (PDEs) — see, e.g., [3,6,10]. The PDEs de-
scribe various natural processes on macroscopic scale, such as fluid flow, elasticity,
heat transfer, electromagnetics, etc. The FEM splits the computational domain into
a set of geometrically simple subdomains (elements) such as quadrilaterals in 2D or
hexahedra in 3D. Inside the elements, the physical fields are approximated by poly-
nomials. The coefficients of the polynomials are called degrees of freedom (DOF). Per-
formance of an adaptive FEM algorithm is the rate at which the approximation error
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decreases. This rate can be measured either in terms of the CPU (computer) time or
the number of DOF in the discrete problem.

The hp-FEM is a modern version of FEM capable of extremely fast (exponential)
convergence [1,2]. In practical computations, adaptive hp-FEM routinely outperforms
standard adaptive FEM by orders of magnitude in terms of both the number of DOF
and CPU time [8,9]. The extremely high efficiency of the hp-FEM has its roots in the
approximation theory: Very smooth functions with small local changes are approxi-
mated optimally using large elements equipped with high-degree polynomials, while
small low-degree elements are much more efficient in areas where the solution exhibits
important small-scale features.

The outline of this paper is as follows: In Section 2 we describe the main idea of
how adaptive hp-FEM can be applied to data and image compression. In Sections 3
we illustrate the methodology on three different examples. Conclusions and outlook
are drawn in Section 4.

2 Applying FEM to data and image compression

The typical application of FEM is to approximate unknown solutions of PDE. How-
ever, FEM can also be applied to data and image compression naturally as follows:
In 2D, the computational domain () is a rectangle containing the image. Usually, the
domain is split into a finite number of pixels, and a greyscale image is represented
by a discontinuous, pixel-wise constant function f. A color image consists of three
such functions f,, f,, fy for the red, green, and blue components, respectively. Unlike
standard image compression algorithms such as JPEG, however, our method is not re-
stricted to pixel-wise constant functions f — the data can be represented by an arbitrary
real function f defined in Q).

2.1 Finite element approximation

Let us explain briefly the way FEM works. The method uses a finite element mesh,
which is a collection of nonoverlapping convex polygons covering (). Given the shape
of () in our application, it is natural to use rectangular elements. A finite element mesh
is said to be regular if no vertex of an element lies inside of an edge of another one, and
irregular otherwise. This is illustrated in Fig. 1.

Most existing finite element codes use regular meshes, since they are easier to im-
plement and analyze mathematically. However, when used with automatic adaptive
algorithms, such meshes produce regularity-enforced refinements which slow down their
convergence [7]. Irregular meshes are much better for adaptive algorithms since ele-
ment refinement is a local operation, i.e., it does not cause any changes in neighboring
elements. Technical details of #p-FEM approximation on arbitrarily-irregular meshes
lie beyond the scope of this presentation, and we refer to [7].

The mesh over () consists of M elements Kj, K5, ..., Ky which are equipped with
polynomial degrees 1 < p; = p(K;). Is standard FEM, the polynomial degree typically



