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Abstract. In this paper, the Discrete Least Squares Meshless (DLSM) method is de-
veloped to determine crack-tip fields. In DLSM, the problem domain and its bound-
ary are discretized by unrelated field nodes used to introduce the shape functions
by the moving least-squares (MLS) interpolant. This method aims to minimize the
sum of squared residuals of the governing differential equations at any nodal point.
Since high-continuity shape functions are used, some necessary treatments, including
the visibility criterion, diffraction, and transparency approaches, are employed in the
DLSM to introduce strong discontinuities such as cracks. The stress extrapolation and
J-integral methods are used to calculate stress intensity factors. Three classic numer-
ical examples using three approaches to defining discontinuities in the irregular dis-
tribution of nodal points are considered to investigate the effectiveness of the DLSM
method. The numerical tests indicated that the proposed method effectively employed
the approaches to defining discontinuities to deal with discontinuous boundaries. It
was also demonstrated that the diffraction approach obtained higher accuracy than the
other techniques.
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1 Introduction

Structural defects such as micro-cracks always have an adverse effect on their service
life. Therefore, it is essential to investigate crack-tip fields to determine the safety factors
and predict the service life of mechanical structures. Recent years have seen substantial
growth in the use of fracture mechanics in structural analysis and design. Crack problems
can be analyzed as elliptic partial differential equations (PDEs) whereby crack-tip stress
singularities can be explained, which is determined by the stress intensity factor (SIF).

Analytical solutions can be used to solve crack problems with regular, non-complex
boundaries in infinite planes. However, numerical methods must be applied to solve
various fracture mechanics problems with complex geometric configurations and load-
ing conditions. The finite element method (FEM) is employed as usual to solve frac-
ture mechanics problems. The domain meshing-based methods, e.g., FEM, have some
shortcomings in calculating fracture mechanic parameters, including failure to accurately
identify near-crack-tip singularities [1] and limited ability to model the crack growth.
The FEM requires mesh modification and updating to simulate the crack growth, a time-
consuming and costly process. The boundary element method (BEM) [2] was applied
to solve crack problems, as it is a time-efficient, sufficiently accurate method that only
requires boundary discretization. The extended finite element method (XFEM) [3] is an
improved version of the FEM that is appropriately designed for fracture mechanics prob-
lems [4]. The XFEM has certain advantages over the conventional FEM; for example,
it can model cracks with arbitrary geometric shapes independently of the FEM meshes,
and it requires minimal re-meshing in solving crack growth problems. Although some
methods, e.g., node release, are introduced to overcome the existing problems [5,6], some
challenges still exist.

The problems detailed above and other shortcomings such as strain/stress discon-
tinuity on element surfaces and the need for some additional operations for smoothing
the results have motivated researchers to try other numerical methods [1]. Thus, several
meshless methods are introduced to overcome these problems. Meshless methods are
developed under two branches of formulations: weak form and strong form. The prob-
lem domain is discretized using nodal points in both methods. However, weak-form
meshless methods require background meshes to obtain Gauss points for integration de-
spite the higher relative accuracy of the results. In some cases, these meshless methods
incur a higher computational cost than mesh-based methods, where integration prob-
lems at complex boundaries still persist. Strong-form meshless methods, on the other
hand, directly solve PDEs and reduce the computational cost. However, they have cer-
tain disadvantages, such as instability, low accuracy of the results, difficulty in applying
boundary conditions, and asymmetric coefficient matrix.

The application of smooth interpolants in meshless methods has led to the desired re-
sults, rendering them advantageous over the FEM. Besides, they have outperformed the
FEM in solving problems with moving boundaries, large deformation, and crack propa-
gation. Despite these advantages, meshless methods also have some disadvantages, in-


