# Congruences Involving Hecke-Rogers Type Series and Modular Forms 

Guo-Shuai Mao* and Yan Liu<br>Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Received October 21, 2021; Accepted November 28, 2022;
Published online June 28, 2023.

Abstract. In this paper, we prove two supercongruences of Hecke-Rogers type series
and Modular forms conjectured by Chan, Cooper and Sica, such as, if

$$
z_{2}=\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} q^{m^{2}+n^{2}}, \quad x_{2}=\frac{\eta^{12}(2 \tau)}{z_{2}^{6}}
$$

and

$$
z_{2}=\sum_{n=0}^{\infty} f_{2, n} x_{2}^{n}
$$

then

$$
f_{2, p n} \equiv f_{2, n} \quad\left(\bmod p^{2}\right) \text { when } p \equiv 1 \quad(\bmod 4)
$$

where

$$
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

and $q=\exp (2 \pi i \tau)$ with $\operatorname{Im}(\tau)>0$.
AMS subject classifications: 11A07, 11B83, 33E50
Key words: Supercongruences, mordular forms, Hecke-Rogers type series, p-adic Gamma function.

## 1 Introduction

Hecke-Rogers type series are of the following type:

$$
\sum_{(m, n) \in D}(-1)^{H(m, n)} q^{Q(m, n)+L(m, n)},
$$

[^0]where $H$ and $L$ are linear forms, $Q$ is a quadratic form, and $D$ is some subset of $\mathbb{Z} \times \mathbb{Z}$. The classical identity of Jacobi is of this type:
$$
\sum_{n=-\infty}^{\infty} \sum_{m \geq|n|}(-1)^{m} q^{\left(m^{2}+m\right) / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3} .
$$

Motivated by the Jacobi identity, Hecke [7] investigated theta functions related to indefinite quadratic forms systematically. For example, Hecke [7, p. 425] found that

$$
\sum_{n=-\infty}^{\infty} \sum_{m \mid \leq n / 2}(-1)^{n+m} q^{\left(n^{2}-3 m^{2}\right) / 2+(n+m) / 2}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}
$$

which is originally due to Rogers [13, p.323].
In his proof of the irrationality of $\zeta(3)$, Apéry [2] introduced the numbers

$$
A_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}, \quad n \in \mathbb{N}=\{0,1, \ldots\}
$$

These numbers are now known as the Apéry numbers. The properties of $A_{n}$ are gradually investigated since the work of Apéry was appeared. One of the properties is that for primes $p \geq 5$,

$$
A_{p} \equiv A_{1} \quad\left(\bmod p^{3}\right) .
$$

This congruence was conjectured by Chowla et al. [3] and proved by Gessel [6], who established the stronger result

$$
A_{p n} \equiv A_{n} \quad\left(\bmod p^{3}\right) .
$$

Peters and Stienstra [12] showed that if

$$
G(z)=\frac{\eta^{7}(2 z) \eta^{7}(3 z)}{\eta^{5}(z) \eta^{5}(6 z)} \quad \text { and } \quad s(z)=\left(\frac{\eta(6 z) \eta(z)}{\eta(2 z) \eta(3 z)}\right)^{12}
$$

then we have

$$
G(z)=\sum_{n=0}^{\infty} A_{n} s^{n}(z)
$$

where

$$
\eta(\tau)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

and $q=\exp (2 \pi i \tau)$ with $\operatorname{Im}(\tau)>0$.
About the modular forms, the reader may consult [10]. Osbrun et al. also got some supercongruences for Apéry-like numbers.

Motivated by work of [6,12], Chan et al. [4] proved the following theorem


[^0]:    *Corresponding author. Email address: maogsmath@163.com (Mao G), 1325507759@qq.com (Liu Y)

