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Abstract. In this paper, we prove two supercongruences of Hecke-Rogers type series
and Modular forms conjectured by Chan, Cooper and Sica, such as, if
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then
f2,pn ≡ f2,n (mod p2) when p≡1 (mod 4),
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and q= exp(2πiτ) with Im(τ)>0.
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1 Introduction

Hecke-Rogers type series are of the following type:

∑
(m,n)∈D

(−1)H(m,n)qQ(m,n)+L(m,n),
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where H and L are linear forms, Q is a quadratic form, and D is some subset of Z×Z.
The classical identity of Jacobi is of this type:
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Motivated by the Jacobi identity, Hecke [7] investigated theta functions related to indefi-
nite quadratic forms systematically. For example, Hecke [7, p. 425] found that
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which is originally due to Rogers [13, p.323].
In his proof of the irrationality of ζ(3), Apéry [2] introduced the numbers
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, n∈N={0,1,.. .}.

These numbers are now known as the Apéry numbers. The properties of An are gradually
investigated since the work of Apéry was appeared. One of the properties is that for
primes p≥5,

Ap ≡A1 (mod p3).

This congruence was conjectured by Chowla et al. [3] and proved by Gessel [6], who
established the stronger result

Apn ≡An (mod p3).

Peters and Stienstra [12] showed that if

G(z)=
η7(2z)η7(3z)
η5(z)η5(6z)

and s(z)=
(
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,

then we have

G(z)=
∞

∑
n=0

Ansn(z),

where

η(τ)=q
1

24

∞

∏
n=1

(1−qn),

and q= exp(2πiτ) with Im(τ)>0.
About the modular forms, the reader may consult [10]. Osbrun et al. also got some

supercongruences for Apéry-like numbers.
Motivated by work of [6, 12], Chan et al. [4] proved the following theorem


