Neighbor Sum Distinguishing Total Chromatic Number of Graphs with Lower Average Degree

Danjun Huang and Dan Bao*
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China.

Received April 16, 2022; Accepted July 20, 2022;
Published online June 29, 2023.

Abstract

For a given simple graph $G=(V(G), E(G))$, a proper total- k-coloring c : $V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$ is neighbor sum distinguishing if $f(u) \neq f(v)$ for each edge $u v \in E(G)$, where $f(v)=\sum_{w v \in E(G)} c(w v)+c(v)$. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by $\chi_{\Sigma}^{\prime \prime}(G)$. It has been conjectured that $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$ for any simple graph G. Let $\operatorname{mad}(G)=\max \left\{\frac{2|E(H)|}{|V(H)|}: H \subseteq G\right\}$ be the maximum average degree of G. In this paper, by using the famous Combinatorial Nullstellensatz, we prove $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{9, \Delta(G)+2\}$ for any graph G with $\operatorname{mad}(G)<4$. Furthermore, we characterize the neighbor sum distinguishing total chromatic number for every graph G with $\operatorname{mad}(G)<4$ and $\Delta(G) \geq 8$.

AMS subject classifications: 53A07, 53C24, 53C40
Key words: Neighbor sum distinguishing total coloring, combinatorial nullstellensatz, maximum average degree

1 Introduction

All graphs mentioned in this paper are undirected, finite and simple. For a graph G, we denote its vertex set, edge set, maximum degree and minimum degree by $V(G), E(G)$, $\Delta(G)$ and $\delta(G)$, respectively. For $v \in V(G)$, the degree of v, denoted by $d(v)$, is the number of edges incident with v. A vertex v is called a k-vertex, a k^{+}-vertex and a k^{-}-vertex if $d(v)=k, d(v) \geq k$ and $d(v) \leq k$, respectively. A k-neighbor of v is a neighbor of v with degree k. Let $d_{k}(v), d_{k^{+}}(v)$ and $d_{k^{-}}(v)$ be the number of neighbors of v with degree k, at least k and at most k in G, respectively. For $v \in V(G)$ and $U \subseteq V(G)$, the number of neighbors of v in U is denoted by $d_{U}(v)$. A 1-vertex is also said to be a leaf. The average degree $\operatorname{ad}(G)$ of a graph G is defined as $\frac{2|E(G)|}{|V(G)|}$. The maximum average degree $\operatorname{mad}(G)$

[^0]of a graph G is the maximum of the average degrees of its subgraphs. For notation and terminology not defined in this paper, see [2].

A proper total-k-coloring of a graph $G=(V(G), E(G))$ is an assignment $c: V(G) \cup$ $E(G) \rightarrow\{1, \ldots, k\}$ such that $c(x) \neq c(y)$ for each pair of adjacent or incident elements $x, y \in V(G) \cup E(G)$. For $v \in V(G)$, let $f(v)=\sum_{w v \in E(G)} c(w v)+c(v)$ be the sum of the colors assigned to the edges incident with v and the color of v. If $f(u) \neq f(v)$ for each edge $u v \in E(G)$, then c is called as a neighbor sum distinguishing total- k-coloring or a tnsd- k coloring of G for short. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number of G, denoted by $\chi_{\Sigma}^{\prime \prime}(G)$.

Given a total- k-coloring c of G, let $S(v)$ denote the set of colors of edges incident with v and the color of v. If $S(u) \neq S(v)$ for each edge $u v \in E(G)$, then c is called as an adjacent vertex distinguishing total- k-coloring. The smallest integer k in such a coloring of G is the adjacent vertex distinguishing total chromatic number of G, denoted by $\chi_{a}^{\prime \prime}(G)$. In 2005, Zhang et al. [14] put forward the following conjecture.

Conjecture 1.1 ([14]). For any graph G with at least two vertices, $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
Zhang et al. [14] proved the conjecture for graphs which are paths, cycles, fans, wheels, stars, complete graphs, bipartite complete graphs and trees. Chen [3] and Wang [11] proved independently the Conjecture 1.1 for graphs with $\Delta(G) \leq 3$. In 2008, Wang and Wang [13] showed that if G is a graph with $\operatorname{mad}(G)<3$, then $\chi_{a}^{\prime \prime}(G) \leq \max \{7, \Delta(G)+2\}$. In 2012, Huang and Wang [7] proved that $\chi_{a}^{\prime \prime}(G) \leq \max \{14, \Delta(G)+3\}$ for planar graphs. In 2014, Wang and Huang [12] proved that $\chi_{a}^{\prime \prime}(G) \leq \max \{15, \Delta(G)+2\}$ for planar graphs. In 2020, Chang et al. [4] proved that $\chi_{a}^{\prime \prime}(G) \leq \max \{11, \Delta(G)+3\}$ for planar graphs.

In 2011, Pilśniak and Woźniak [9] introduced the concept of tnsd- k-coloring and put forward the following conjecture.

Conjecture 1.2 ([9]). For any graph G with at least two vertices, $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$.
Conjecture 1.2 implies Conjecture 1.1. Pilśniak and Woźniak [9] confirmed the Conjecture 2 for cycles, complete graph, subcubic graphs and bipartite graphs. In 2013, Li et al. [8] proved that conjecture holds for K_{4}-minor free graphs. In 2014, Dong et al. [5] showed that if G is a graph with $\operatorname{mad}(G)<3$, then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{7, \Delta(G)+2\}$. In 2017, Qiu et al. [10] proved that if G is a graph with $\operatorname{mad}(G)<\frac{9}{2}$, then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{11, \Delta(G)+3\}$. In 2020, Hocquard and Przybylo [6] proved that if G is a graph with $\operatorname{mad}(G)<\frac{14}{3}$, then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{11, \Delta(G)+3\}$.

In this paper, we prove the following result:
Theorem 1.1. Let G be a graph with $\operatorname{mad}(G)<4$.
(1) Then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{9, \Delta(G)+2\}$.
(2) If $\Delta(G) \geq 8$, then $\chi_{\Sigma}^{\prime \prime}(G)=\Delta(G)+1$ if and only if G without adjacent $\Delta(G)$-vertices.

The girth $g(G)$ of a graph G is the smallest length of the cycles in G. We get the following corollary from Theorem 1.1 for planar graph.

[^0]: *Corresponding author. Email address: hdanjun@.zjnu.cn (Huang D), 17805800805@163.com (Bao D)

