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Abstract. In the author’s previous paper, we considered the equivalent conditions
with W−m,p(·)-version (m ≥ 0 integer) of the J. L. Lions Lemma, where p(·) is a vari-
able exponent. In this paper, we directly derive W−m,p(·)-version of the J. L. Lions
Lemma. Therefore, we can use all of the equivalent conditions. As an application, we
derive the generalized Korn inequality. Furthermore, we consider the relation to other
fundamental results.
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1 Introduction

Assume that Ω is a bounded domain of Rd with a Lipschitz-continuous boundary ∂Ω, Ω
is locally on the same side of Γ and p∈P log

+ (Ω) is a variable exponent. In the previous
paper Aramaki [3], we derived the following theorem on the equivalent conditions with
the J. L. Lions Lemma.

Theorem 1.1. Let Ω be a bounded domain of Rd with a Lipschitz-continuous boundary Γ=∂Ω
and Ω be locally on the same side of ∂Ω, and let m≥ 0 be a integer and p∈P log

+ (Ω). Then the
following (a), (b), . . . , and (f) are equivalent.

(a) Classical J. L. Lions Lemma: if f ∈W−m−1,p(·)(Ω) satisfies ∇ f ∈W−m−1,p(·)(Ω), then
f ∈W−m,p(·)(Ω).

(b) The Nec̆as inequality: there exists a constant C0=C0(m,p(·),Ω) such that

∥ f ∥W−m,p(·)(Ω)≤C0(∥ f ∥W−m−1,p(·)(Ω)+∥∇ f ∥W−m−1,p(·)(Ω)) for all f ∈W−m,p(·)(Ω).
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(c) The operator grad has a closed range: grad(W−m,p(·)(Ω)/R) is a closed subspace of
W−m−1,p(·)(Ω).

(d) A coarse version of the de Rham Theorem: for any h ∈W−m−1,p(·)(Ω), there exists a
unique [π]∈W−m,p(·)(Ω)/R, where [π] denotes the class in W−m,p(·)(Ω)/R with the represen-
tative π, such that h=∇π in W−m−1,p(·)(Ω) if and only if

⟨h,v⟩
W−m−1,p(·)(Ω),Wm+1,p′(·)

0 (Ω)
=0 for all v∈Wm+1,p′(·)

0 (Ω,div0).

(e) The operator div is surjective: the operator

div :Wm+1,p′(·)
0 (Ω)→Ẇm,p′(·)

0 (Ω).

is continuous and surjective. In addition, if f ∈ Ḋ(Ω), then there exists u f ∈D(Ω) such that
divu f = f .

Consequently, for any f ∈Ẇm,p′(·)
0 (Ω), there exists a unique

[u f ]∈Wm+1,p′(·)
0 (Ω)/Kerdiv,

where Kerdiv=Wm+1,p′(·)
0 (Ω,div0) and [u f ] denotes the class in Wm+1,p′(·)

0 (Ω)/Kerdiv with
the representative u f such that div[u f ]= f in Ω. Therefore, the operator

div :Wm+1,p′(·)
0 (Ω)/Kerdiv→Ẇm,p′(·)

0 (Ω)

is linear, continuous and bijective. Hence, by the Banach open mapping theorem, there exists a
constant C1=C1(m,p(·),Ω)>0 such that

∥[u f ]∥Wm+1,p′(·)
0 (Ω)/Kerdiv

≤C1∥ f ∥Wm,p′(·)(Ω) for all f ∈Ẇm,p′(·)
0 (Ω).

(f) The J. L. Lions Lemma: if f ∈D′(Ω) satisfies ∇ f ∈W−m−1,p(·)(Ω), then we can find that
f ∈W−m,p(·)(Ω).

When p(·) = const. = 2 and m = 0, Amrouche et al. [1] derived this theorem in L2-
framework. Various results are drawn from the classical J. L. Lions Lemma, see, for ex-
ample, Boyer and Fabrie [5] and Ciarlet [6]. Aramaki [4] derived an improvement to the
case where p(·)= const.= p (1< p<∞) and m≥ 0 is an integer. We can prove that the
classical Nec̆as inequality (b) holds directly (cf. Amrouche and Girault [2, Theorem 2.3]).
Consequently if Ω is a bounded domain with a Lipschitz-continuous boundary, m ≥ 0
is an integer and p(·) = p = const., then all of (a)-(f) are usable. We applied the result
to the existence of a weak solution to the Maxwell-Stokes type problem in the previous
paper [4].

For general p∈P log
+ (Ω) and m=0, the Nec̆as inequality (b) of Theorem 1.1 holds (Di-

ening et al. [7, Theorem 14.3.18]), thus all of (a)-(f) are usable in the case m=0. However,


