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Dynamical Analysis for a General Jerky Equation
with Random Excitation⇤
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Abstract A general jerky equation with random excitation is investigated in

this paper. Before introducing the random excitation term, the equation is re-

duced to a two-dimensional model when undergoing a Hopf bifurcation. Then

the model with the parametric excitation and external excitation is converted

to a stochastic di↵erential equation with singularity based on the stochas-

tic average theory. For the equation, its dynamical behaviors are analyzed

in di↵erent parameters’ spaces, including the stability, stochastic bifurcation

and stationary solution. Besides, numerical simulations are given to show the

asymptotic behavior of the stationary solution.
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1. Introduction

In the real world, the motion of objects is inevitably influenced by environmental
factors, internal structures and other unknown elements. As a result, stochastic
systems can predict the evolution of trends more precisely. Furthermore, it fosters
the development of random dynamical systems [2] that have widespread applications
in physics [15, 24,25], economics [4, 8, 12] and ecosystems [5, 9, 10, 13,17,26].

The jerky equation, which is a third-order explicit autonomous ordinary di↵er-
ential equation represented as

...
u = J(u, u̇, ü), describes the motion of objects in

terms of displacement u, velocity u̇, acceleration ü and jerk
...
u . In 1998, Eichhorn et

al., proposed seven jerky equations JD1�JD7, which encompassed nineteen impor-
tant physical chaotic frameworks (A-S) [6] and Rössler’s toroidal (TR) model [21].
Later on, Ren, Yu and Zhu, [20] performed a comprehensive dynamical analysis of
discrete-time JD1 and continuous-time JD1 with delayed feedback. Correspond-
ingly, Tang, Zhang and Ren [22] systematically investigated the following general
jerky equation that comprises JD1 � JD7

...
u = ↵0 + ↵1u+ ↵2u̇+ ↵3ü+ ↵4u

2 + ↵5u̇
2 + ↵6uu̇+ ↵7uü, (1.1)

where ↵i are the parameters, and i = 0, 1, . . . , 7. They determined precise bifurca-
tion conditions for Fold, Hopf, Zero-Hopf and Bogdanov-Takens bifurcations. The
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rich dynamical behaviors of equation (1.1) appeal us to investigate its stochastic
dynamics, when it is disturbed by the parametric and external excitations. There-
fore, we introduce a new stochastic model by incorporating noises into equation
(1.1). Before adding the stochasticity, we reduce (1.1) to a two-dimensional equa-
tion, when it undergoes Hopf bifurcation by the center manifold theory. Then we
add the parametric and external excitations to the two-dimensional equation, and
transform it into a stochastic di↵erential equation (SDE) with singularity by using
the Khasminskii limit theorem [11,23] and the stochastic averaging method [16,19].
Interestingly, we obtain a nonlinear SDE comprising a singularity term. Following
that, we discuss the stochastic stability using the singular boundary theory [14,27],
and prove that the SDE without singularity undergoes the stochastic D-bifurcation
and stochastic P -bifurcation [3,7,18]. Furthermore, we calculate the stationary so-
lution for SDE with singularity by deriving its probability density function. Finally,
we give numerical simulations to show the asymptotic behavior of the stationary
solution with respect to various parameters.

2. Preparation

In this section, we reduce equation (1.1) to a two-dimensional system, when it
undergoes Hopf bifurcation.

By setting u̇ = v, v̇ = w in (1.1), the equilibrium (u⇤, 0, 0) where Hopf bifurcation
occurs in [22] is as follows.

• u⇤ = �
↵0
↵1

, when ↵1 6= 0, ↵4 = 0;

• u⇤ = �↵1�
p
�

2↵4
or u⇤ = �↵1+

p
�

2↵4
, when ↵4 6= 0, ↵2

1 > 4↵4↵0, where � =p
↵2
1 � 4↵4↵0.

Making the transformation ū ! u � u⇤, v̄ ! v, w̄ ! w, and still using the original
notations u, v, w, system (1.1) becomes

8
>>><

>>>:

u̇ = v,

v̇ = w,

ẇ = ↵4u2 + ↵5v2 + ↵6uv + ↵7uw

+(2↵4u⇤ + ↵1)u+ (↵6u⇤ + ↵2)v + (↵7u⇤ + ↵3)w.

(2.1)

The Jacobian matrix of (2.1) evaluated at (0, 0, 0) is

A =

0

BBB@

0 1 0

0 0 1

�� �� �↵

1

CCCA
. (2.2)

The characteristic equation of (2.1) at the equilibrium (0, 0, 0) takes the form �3 +
↵�2+��+� = 0, where ↵ = �(↵7u⇤+↵3), � = �(↵6u⇤+↵2), and � = �(2↵4u⇤+
↵1). Substituting � = iµ into the characteristic equation yields a relation among
↵, � and �. If

� =
�

↵
, � = µ2,


