Second-Order Difference Equation for Sobolev-Type **Orthogonal Polynomials.** Part II: Computational Tools

Galina Filipuk¹, Juan F. Mañas-Mañas^{2,*} and Juan J. Moreno-Balcázar^{2,3}

¹Faculty of Mathematics, Informatics and Mechanics, University of Warsaw and Institute of Mathematics, Poland. ²Departamento de Matemáticas, Universidad de Almería, Spain.

³Instituto Carlos I de Física Teórica y Computacional, Spain.

Received 14 August 2022; Accepted (in revised version) 19 February 2023.

Abstract. We consider polynomials orthogonal with respect to a nonstandard inner product. In fact, we deal with Sobolev-type orthogonal polynomials in the broad sense of the expression. This means that the inner product under consideration involves the Hahn difference operator, thus including the difference operators \mathcal{D}_a and Δ and, as a limit case, the derivative operator. In a previous work, we studied properties of these polynomials from a theoretical point of view. There, we obtained a second-order differential/difference equation satisfied by these polynomials. The aim of this paper is to present an algorithm and a symbolic computer program that provides us with the coefficients of the second-order differential/difference equation in this general context. To illustrate both, the algorithm and the program, we will show three examples related to different operators.

AMS subject classifications: 33C47, 42C05, 34A05

Key words: Sobolev orthogonal polynomials, second-order difference equation, symbolic computation.

1. Introduction

In this paper we tackle the problem of computing symbolically the coefficients of the second-order differential/difference equation satisfied by the monic orthogonal polynomials $Q_n(x)$ with respect to the general discrete Sobolev-type inner product

$$(f,g)_{S} = \int f(x)g(x)\varrho(x)dx + M\mathscr{D}_{q,\omega}^{(j)}f(c)\mathscr{D}_{q,\omega}^{(j)}g(c), \qquad (1.1)$$

where $\rho(x)$ is a weight function on the real line, c is located on the real axis, M > 0, j is a nonnegative integer, and $\mathcal{D}_{q,\omega}$ is the operator introduced by Hahn [5, Eq. (1.3)] defined

^{*}Corresponding author. Email addresses: jmm939@ual.es (J.F. Mañas-Mañas), filipuk@mimuw.edu.pl (G. Filipuk), balcazar@ual.es (J.J. Moreno-Balcázar)

Second-Order Difference Equation for Sobolev-Type OP: Computational Tools

by

$$\mathcal{D}_{q,\omega}f(x) = \begin{cases} \frac{f(qx+\omega) - f(x)}{(q-1)x + \omega}, & \text{if } x \neq \omega_0, \\ f'(\omega_0), & \text{if } x = \omega_0, \end{cases}$$
(1.2)

where 0 < q < 1, $\omega \ge 0$, and $\omega_0 = \omega/(1-q)$, cf. [8, Eq. (2.1.1)]. Besides, following [1], we define

$$\mathscr{D}_{q,\omega}^{(0)}f := f, \quad \mathscr{D}_{q,\omega}^{(j)}f := \mathscr{D}_{q,\omega}\mathscr{D}_{q,\omega}^{(j-1)}f, \quad j \ge 1.$$

It is well known that this class of operators includes the *q*-difference operator \mathcal{D}_q by Jackson when $\omega = 0$, the forward difference operator Δ when q = 1 and $\omega = 1$, and the derivative operator d/dx as a limit case when $\omega = 0$ and $q \rightarrow 1$.

Theoretical backgrounds of this problem are established by [4, Theorems 4.1-4.2]. In particular, it was shown that the nonstandard orthogonal polynomials $Q_n(x)$ satisfy the second-order difference equation

$$\sigma_{1,c,n}(x)\mathscr{D}_{q,\omega}^{(2)}Q_n(x) + \sigma_{2,c,n}(x)\mathscr{D}_{q,\omega}Q_n(x) + \sigma_{3,c,n}(x)Q_n(x) = 0, \quad n \ge 2,$$
(1.3)

where $\sigma_{1,c,n}(x)$, $\sigma_{2,c,n}(x)$, and $\sigma_{3,c,n}(x)$ are explicitly known functions. Moreover, there exist two operators Φ_n and $\widehat{\Phi}_n$, known as ladder operators, involving the operator of Hahn defined by (1.2) such that

$$\Phi_n Q_n(x) = \varphi_{c,n}^{1,2}(x) Q_{n-1}(x), \qquad (1.4)$$

$$\widehat{\Phi}_n Q_{n-1}(x) = \varphi_{c,n}^{3,4}(x) Q_n(x), \tag{1.5}$$

where $\varphi_{c,n}^{1,2}(x)$ and $\varphi_{c,n}^{3,4}(x)$ can also be computed explicitly.

The study of second-order differential/difference equations and their solutions appear in several theoretical and applied contexts. Thus it is worth studying how to compute explicitly the polynomial coefficients $\sigma_{1,c,n}(x)$, $\sigma_{2,c,n}(x)$ and $\sigma_{3,c,n}(x)$ of (1.3). In this paper we present an algorithm highlighting its more important steps. Later, the symbolic program will be built using the programming language *Mathematica*[®]13.1.0.[†] The corresponding code is freely available at https://w3.ual.es/GruposInv/Tapo/SODE.nb

The literature related to symbolic programs in the framework of Sobolev orthogonality is very recent. As far as we know, the first paper is [10], where Mehler-Heine formulas are computed symbolically — cf. https://notebookarchive.org/2022-06-amlp3fh, Notebook Archive (2022).

This paper is structured as follows. Section 2 is devoted to introducing theoretical results obtained in [4] as well as an algorithm to obtain symbolically the coefficients of the second-order differential/difference equation (1.3). In Section 3, we show how the program works for three examples related to different operators.

[†]The program in previous versions of *Mathematica*[®]may not work properly — e.g. we found malfunctions in the version 13.0.0.