Second-Order Difference Equation for Sobolev-Type Orthogonal Polynomials. Part II: Computational Tools

Galina Filipuk ${ }^{1}$, Juan F. Mañas-Mañas ${ }^{2, *}$ and Juan J. Moreno-Balcázar ${ }^{2,3}$
${ }^{1}$ Faculty of Mathematics, Informatics and Mechanics, University of Warsaw and Institute of Mathematics, Poland.
${ }^{2}$ Departamento de Matemáticas, Universidad de Almería, Spain.
${ }^{3}$ Instituto Carlos I de Física Teórica y Computacional, Spain.

Received 14 August 2022; Accepted (in revised version) 19 February 2023.

Abstract

We consider polynomials orthogonal with respect to a nonstandard inner product. In fact, we deal with Sobolev-type orthogonal polynomials in the broad sense of the expression. This means that the inner product under consideration involves the Hahn difference operator, thus including the difference operators $\mathscr{\mathscr { D }}_{q}$ and Δ and, as a limit case, the derivative operator. In a previous work, we studied properties of these polynomials from a theoretical point of view. There, we obtained a second-order differential/difference equation satisfied by these polynomials. The aim of this paper is to present an algorithm and a symbolic computer program that provides us with the coefficients of the second-order differential/difference equation in this general context. To illustrate both, the algorithm and the program, we will show three examples related to different operators.

AMS subject classifications: 33C47, 42C05, 34A05
Key words: Sobolev orthogonal polynomials, second-order difference equation, symbolic computation.

1. Introduction

In this paper we tackle the problem of computing symbolically the coefficients of the second-order differential/difference equation satisfied by the monic orthogonal polynomials $Q_{n}(x)$ with respect to the general discrete Sobolev-type inner product

$$
\begin{equation*}
(f, g)_{S}=\int f(x) g(x) \varrho(x) d x+M \mathscr{D}_{q, \omega}^{(j)} f(c) \mathscr{D}_{q, \omega}^{(j)} g(c), \tag{1.1}
\end{equation*}
$$

where $\varrho(x)$ is a weight function on the real line, c is located on the real axis, $M>0, j$ is a nonnegative integer, and $\mathscr{D}_{q, \omega}$ is the operator introduced by Hahn [5, Eq. (1.3)] defined

[^0]by
\[

\mathscr{D}_{q, \omega} f(x)=\left\{$$
\begin{array}{lll}
\frac{f(q x+\omega)-f(x)}{(q-1) x+\omega}, & \text { if } \quad x \neq \omega_{0}, \tag{1.2}\\
f^{\prime}\left(\omega_{0}\right), & \text { if } \quad x=\omega_{0},
\end{array}
$$\right.
\]

where $0<q<1, \omega \geq 0$, and $\omega_{0}=\omega /(1-q)$, cf. [8, Eq. (2.1.1)]. Besides, following [1], we define

$$
\mathscr{D}_{q, \omega}^{(0)} f:=f, \quad \mathscr{D}_{q, \omega}^{(j)} f:=\mathscr{D}_{q, \omega} \mathscr{D}_{q, \omega}^{(j-1)} f, \quad j \geq 1 .
$$

It is well known that this class of operators includes the q-difference operator \mathscr{D}_{q} by Jackson when $\omega=0$, the forward difference operator Δ when $q=1$ and $\omega=1$, and the derivative operator $d / d x$ as a limit case when $\omega=0$ and $q \rightarrow 1$.

Theoretical backgrounds of this problem are established by [4, Theorems 4.1-4.2]. In particular, it was shown that the nonstandard orthogonal polynomials $Q_{n}(x)$ satisfy the second-order difference equation

$$
\begin{equation*}
\sigma_{1, c, n}(x) \mathscr{D}_{q, \omega}^{(2)} Q_{n}(x)+\sigma_{2, c, n}(x) \mathscr{D}_{q, \omega} Q_{n}(x)+\sigma_{3, c, n}(x) Q_{n}(x)=0, \quad n \geq 2 \tag{1.3}
\end{equation*}
$$

where $\sigma_{1, c, n}(x), \sigma_{2, c, n}(x)$, and $\sigma_{3, c, n}(x)$ are explicitly known functions. Moreover, there exist two operators Φ_{n} and $\widehat{\Phi}_{n}$, known as ladder operators, involving the operator of Hahn defined by (1.2) such that

$$
\begin{align*}
& \Phi_{n} Q_{n}(x)=\varphi_{c, n}^{1,2}(x) Q_{n-1}(x), \tag{1.4}\\
& \widehat{\Phi}_{n} Q_{n-1}(x)=\varphi_{c, n}^{3,4}(x) Q_{n}(x), \tag{1.5}
\end{align*}
$$

where $\varphi_{c, n}^{1,2}(x)$ and $\varphi_{c, n}^{3,4}(x)$ can also be computed explicitly.
The study of second-order differential/difference equations and their solutions appear in several theoretical and applied contexts. Thus it is worth studying how to compute explicitly the polynomial coefficients $\sigma_{1, c, n}(x), \sigma_{2, c, n}(x)$ and $\sigma_{3, c, n}(x)$ of (1.3). In this paper we present an algorithm highlighting its more important steps. Later, the symbolic program will be built using the programming language Mathematica ${ }^{\circledR} 13.1 .0 .^{\dagger}$ The corresponding code is freely available at https://w3.ual.es/GruposInv/Tapo/SODE.nb

The literature related to symbolic programs in the framework of Sobolev orthogonality is very recent. As far as we know, the first paper is [10], where Mehler-Heine formulas are computed symbolically - cf. https://notebookarchive.org/2022-06-amlp3fh, Notebook Archive (2022).

This paper is structured as follows. Section 2 is devoted to introducing theoretical results obtained in [4] as well as an algorithm to obtain symbolically the coefficients of the second-order differential/difference equation (1.3). In Section 3, we show how the program works for three examples related to different operators.

[^1]
[^0]: *Corresponding author. Email addresses: jmm939@ual.es (J.F. Mañas-Mañas), filipuk@mimuw.edu.pl (G. Filipuk), balcazar@ual.es (J.J. Moreno-Balcázar)

[^1]: ${ }^{\dagger}$ The program in previous versions of Mathematica ${ }^{\circledR}$ may not work properly - e.g. we found malfunctions in the version 13.0.0.

