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Abstract. We propose a mesh-free method to solve the full Stokes equation for mod-
eling the glacier dynamics with nonlinear rheology. Inspired by the Deep-Ritz method
proposed in [13], we first formulate the solution to the non-Newtonian Stokes equa-
tion as the minimizer of a variational problem with boundary constraints. Then, we
approximate its solution space by a deep neural network. The loss function for train-
ing the neural network is a relaxed version of the variational form, in which penalty
terms are used to present soft constraints due to mixed boundary conditions. Instead
of introducing mesh grids or basis functions to evaluate the loss function, our method
only requires uniform sampling from the physical domain and boundaries. Further-
more, we introduce a re-normalization technique in the neural network to address the
significant variation in the scaling of real-world problems. Finally, we illustrate the
performance of our method by several numerical experiments, including a 2D model
with the analytical solution, the Arolla glacier model with realistic scaling and a 3D
model with periodic boundary conditions. Numerical results show that our proposed
method is efficient in solving the non-Newtonian mechanics arising from glacier mod-
eling with nonlinear rheology.
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1 Introduction

In recent years, deep neural networks (DNNs) have achieved unprecedented levels of
success in a broad range of areas such as computer vision, speech recognition, natural
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language processing, and health sciences, producing results comparable or superior to
human experts [17, 31]. The impacts have reached physical sciences where traditional
first-principle based modeling and computational methodologies have been the norm.
Thanks in part to the user-friendly open-source computing platforms from industry, e.g.
TensorFlow and PyTorch, there have been vibrant activities in applying deep learning
tools for scientific computing, such as approximating multivariate functions, solving or-
dinary/partial differential equations (ODEs/PDEs) and inverse problems using DNNs;
see, e.g. [2, 13, 19, 28, 51, 60, 65] and references therein. There are many classical works on
the approximation power of neural networks; see e.g. [11, 14, 22, 47]. For recent works
on the expressive (approximation) power of DNNs; see, e.g. [10, 36, 41, 54, 55, 63]. In [19],
the authors showed that DNNs with rectified linear unit (ReLU) activation function and
enough width/depth contain the continuous piece-wise linear finite element space. Thus,
one can represent a solution of PDE using the ReLU-DNN.

Solving ODEs or PDEs by a neural network (NN) approximation is known in the lit-
erature dating back at least to the 1990’s; see e.g. [30,32,40]. The main idea in these works
is to train NNs to approximate the solution by minimizing the residual of the ODEs or
PDEs, along with the associated initial and boundary conditions. These early works es-
timate neural network solutions on a fixed mesh. Recently DNN methods are developed
for Poisson and eigenvalue problems with a variational principle characterization (deep
Ritz, [13]), for a class of high-dimensional parabolic PDEs with stochastic representa-
tions [18], for advancing finite element methods [7, 8, 20], for nonconvex energy mini-
mization in simulating martensitic phase transitions [9], and for learning and generating
invariant measures of stochastic dynamical systems with parameters [59]. The physics-
informed neural network (PINN) method [49] and a deep Galerkin method (DGM) [56]
compute PDE solutions based on their physical properties. For parametric PDEs, a deep
operator network (DeepONet) learns operators accurately and efficiently from a rela-
tively small dataset based on the universal approximation theorem of operators [37]; a
Fourier neural operator method [33] directly learns the mapping from functional para-
metric dependence to the solutions of a family of PDEs. In [1, 64], weak adversarial
network methods are studied for weak solutions and inverse problems, see also related
studies on PDE recovery from data via DNN [34, 35, 48, 61] among others. In the con-
text of surrogate modeling and uncertainty quantification (UQ), DNN methods include
Bayesian deep convolutional encoder-decoder networks [65], deep multi-scale model
learning [58], physics-constrained deep learning method [66], see also [27, 28, 54, 62] and
references therein.

In this work, we present a deep learning method for solving problems in non-
Newtonian mechanics that obey certain variational principles. In particular, we focus
on nonlinear Stokes problems in which the viscosity nonlinearly depends on the strain
rate. This type of problems plays a fundamental role in modelling geodynamic processes,
for instance, the dynamics of glaciers [24, 46] and mantle convection [39, 52]. The solu-
tions of these problems typically face a combination of challenges, such as the presence
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