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Abstract. Particle-resolved direct numerical flow solvers predominantly use a projec-
tion method to decouple the non-linear mass and momentum conservation equations.
The computing performance of such solvers often decays beyond O(1000) cores due to
the cost of solving at least one large three-dimensional pressure Poisson problem per
time step. The parallelization may perform moderately well only or even poorly some-
times despite using an efficient algebraic multigrid preconditioner [38]. We present an
accurate and scalable solver using a direction splitting algorithm [12] to transform all
three-dimensional parabolic/elliptic problems (and in particular the elliptic pressure
Poisson problem) into a sequence of three one-dimensional parabolic sub-problems,
thus improving its scalability up to multiple thousands of cores. We employ this algo-
rithm to solve mass and momentum conservation equations in flows laden with fixed
non-spherical rigid bodies. We consider the presence of rigid bodies on the (uniform
or non-uniform) fixed Cartesian fluid grid by modifying the diffusion and divergence
stencils on the impacted grid node near the rigid body boundary. Compared to [12],
we use a higher-order interpolation scheme for the velocity field to maintain a second-
order stress estimation on the particle boundary, resulting in more accurate dimension-
less coefficients such as drag Cd and lift Cl . We also correct the interpolation scheme
due to the presence of any nearby particle to maintain an acceptable accuracy, making
the solver robust even when particles are densely packed in a sub-region of the com-
putational domain. We present classical validation tests involving a single or multiple
(up to O(1000)) rigid bodies and assess the robustness, accuracy and computing speed
of the solver. We further show that the Direction Splitting solver is ∼5 times faster on
5120 cores than our solver [38] based on a classical projection method [5].
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1 Introduction

Particle-laden flows pervade broad industrial applications such as packed-bed reactors,
fluidized beds, and particle-based solar receivers [26]. A detailed understanding of hy-
drodynamics, mass, and heat transfer in these processes can provide significant opportu-
nities for productivity enhancement and cost savings. The critical difficulties in particle-
laden flows are the influence of particles on the fluid flow, the potential high particle
loading, and the multiple degrees of freedom of the particles, such as shape, size, polydis-
persity, and orientation. Computational studies of particle-laden systems have success-
fully provided valuable information on the flow characteristics, whether computations
are performed on a uniform or a non-uniform distribution of grid nodes. However, a
large flow configuration consists of numerous points (O(109)), resulting in high comput-
ing time and hence requires massive parallel platforms. Various numerical methods are
present in the literature to solve particle-laden flows, which can feature either fast com-
putational speed or high accuracy depending on how the rigid bodies are resolved. These
methods are broadly characterized into microscale and mesoscale models. In mesoscale
models, the particle surface is not treated as a boundary, and the fluid-particle interac-
tions are captured by adding the factor of a local void fraction to the mass and momentum
conservation equations. As a result, the computational cost is less, and closure models
for Cd and Cl are required to approximate the fluid-particle interaction. Additionally,
using the local void fraction as the only variable may not correctly capture the particle
degrees of freedom. On the other hand, a microscale model assumes the particle size of
at least an order of magnitude larger than the largest fluid grid step size resulting in a
fully-resolved fluid-particle interface, also known as Particle Resolved-Direct Numerical
Simulation (PR-DNS). Resolving particle boundaries and considering all particle degrees
of freedom make the microscale method computationally expensive but exhibit high ac-
curacy without any approximation of closure relations.

The Lattice Boltzmann method and classical methods such as Finite Volume (FV) or
Finite Difference (FD) are becoming the primary computational techniques in PR-DNS.
The former computes the fluid flow using a particle collision approach over fixed lat-
tice points, and the latter discretizes the coupled non-linear partial differential equations
over a uniform or non-uniform spatial grid. Space and time discretization in both meth-
ods uses a first or second-order scheme to get an approximate solution. A second-order
scheme in space and time computes the solution more accurately for a time-varying
particle-laden flow. For example, a numerically estimated drag coefficient converges
quickly to a grid-independent value in a second-order scheme, requiring fewer spatial
and temporal variables in computing. However, even with the second-order scheme,
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