
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS
J. Part. Diff. Eq., Vol. 36, No. 4, pp. 404-413

doi: 10.4208/jpde.v36.n4.6
December 2023

The Lifespan of Smooth Solutions to Semilinear Wave
Equations in Schwarzschild Space-Time

LOU Qiong1 and LUO Shaoying2,*

1 School of Science, Zhejiang University of Science and Technology, Hangzhou 310023,
China.
2 Faculty of Science, Ningbo University of Technology, Ningbo 315211, China.

Received 21 August 2021; Accepted 20 January 2023

Abstract. This paper considers the Cauchy problem of the semilinear wave equations
with small initial data in the Schwarzschild space-time, □gu= |ut|p, where g denotes
the Schwarzschild metric. When 1< p<2 and the initial data are supported far away
from the black hole, we can prove that the lifespan of the spherically symmetric solu-
tion obtains the same order as the semilinear wave equation evolving in the Minkowski
space-time by introducing an auxiliary function.
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1 Introduction

In this paper, we consider the blow-up phenomenon of the solution to the following
nonlinear wave equation

□gu= |ut|p, (1.1)

where g denotes the metric of the Schwarzschild space-time and p>1.
In the Minkowski spacetime, the critical exponent is p(n) = n+1

n−1 , in which n is the
spatial dimension. It is well-known that when 1< p≤ p(n), the solution blows up even
for small initial data; when p>p(n), global solution for small initial data exists. The blow-
up results were first established by F. John [1] when n=3. When n=2, such results were
given by J. Schaeffer [2] as well as R. Agemi [3]. When n= 1, K. Masuda [4] proved the
same result. The radially symmetric solutions also blow up when n≥4 with p=p(n) if n is
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odd, and 1<p<p(n) when n is even. The lifespan of solution was also discussed in some
papers. Li and Chen [5] studied the lower bound of the lifespan. The lifespan is proved
to be sharp as in Lax [6], F. John [7], Kong [8] and Y. Zhou [9], while the general result
was obtained in Y. Zhou [10]. For the blow-up of solutions with variable coefficients on
exterior domain, see Y. Zhou and W. Han in [11].

Recently, the study of hyperbolic partial differential equations in curved space-time
has draw much attention of the mathematicians, due to the great development of the gen-
eral relativity. We want to know whether the results of hyperbolic PDEs in Minkowski
space-time are still hold in curved space-time. One can see [12–16] for the perfect fluids
in FLRW spacetimes, and see [17–19] for nonlinear wave equations in de Sitter space-
time. In this paper, we are interested in the lifespan of smooth solutions to the semilinear
wave equations evolving in Schwarzschild space-time. When the nonlinear term is |u|p
with 3/2 ≤ p ≤ 2, the lifespan has been studied by Lin, Lai and Ming [20]. When the
nonlinear term is |ut|p with 1< p<2, Lai and Zhou [21] studied the lifespan of the spher-
ically symmetric solution. The general results on the Glassey conjecture for all spatial
dimensions with radially symmetric data is studied by Hidano Wang and Yokoyama,
see [22]. Inspired by Y. Zhou and W. Han in [11], We consider the semilinear wave equa-
tions evolving in the Schwarzschild space-time when 1< p< p(n). We can prove that the

lifespan is T(ε)≤ C̃ε
− p−1

2−p , which has the same order as the Minkowski case.

1.1 Main theorem

Consider the nonlinear wave equations in the Schwarzschild spacetime M

□gu= |ut|p, p>1. (1.2)

The Schwarzschild metric g is

g=
(

1− 2M
r

)
dt2−

(
1− 2M

r

)−1

dr2−r2dω2, (1.3)

here M> 0 denotes the mass of the universe and dω2 is the standard metric on the unit
sphere S2, r>2M. Denoting

F(r)=1− 2M
r

, (1.4)

the D’Alembert operator associated with metric g becomes

□g =
1
F

(
∂2

t −
F
r2 ∂r(r2F∂r)−

F
r2△S2

)
, (1.5)

where △S2 is the standard Laplace-Beltrami operator on S2.
Define the Regge-Wheeler coordinate

s(r)= r+2Mlog(r−2M) (1.6)


