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ORTHOGONAL SPLINE COLLOCATION FOR POISSON’S

EQUATION WITH NEUMANN BOUNDARY CONDITIONS

BERNARD BIALECKI∗ AND NICK FISHER

Abstract. We apply orthogonal spline collocation with splines of degree r ≥ 3 to solve, on the
unit square, Poisson’s equation with Neumann boundary conditions. We show that the H1 norm
error is of order r and explain how to compute efficiently the approximate solution using a matrix

decomposition algorithm involving the solution of a symmetric generalized eigenvalue problem.
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1. Introduction

In this paper we consider Poisson’s equation

(1) −∆u = f(x1, x2), (x1, x2) ∈ Ω = (0, 1)× (0, 1),

where ∆ ≡ ∂2/∂x21 + ∂2/∂x22 and u satisfies nonhomogeneous Neumann boundary
conditions

(2) ux1(α, x2) = g1(α, x2), α = 0, 1, x2 ∈ [0, 1],

(3) ux2(x1, β) = g2(x1, β), x1 ∈ [0, 1], β = 0, 1.

Using (1)–(3) and integrating with respect to x1 and x2, we obtain
(4)∫
Ω

f(x1, x2)dx1dx2+

∫ 1

0

[g1(1, x2)−g1(0, x2)]dx2+
∫ 1

0

[g2(x1, 1)−g2(x1, 0)]dx1 = 0,

which is a necessary condition for the existence of u satisfying (1)–(3). To guarantee
uniqueness of the solution u of (1)–(3), we impose the condition

(5)

∫
Ω

u(x1, x2)dx1dx2 = γ,

where γ in R is specified.
A finite difference scheme for (1)–(3) in section 4.7.2 of [12], involving an extend-

ed system of linear equations, is second order accurate in the discrete maximum
norm. A finite difference scheme for (1)–(3), (5), described in Theorem 9 on page
327 in [17], involving a finite difference counterpart of (5), is second order accurate
in the discrete H1 norm. It is also shown in Theorem 2 on page 338 in [17] that
this scheme is second order accurate in the discrete maximum norm. [1] is con-
cerned with a Galerkin spectral solver for the Neumann problem for the constant
coefficient Helmholtz equation on a rectangle. Finite element schemes for solving
the pure Neumann problem on a bounded domain Ω are discussed in [13]. The
present paper is a generalization of [4] to nonzero Neumann boundary conditions
and splines of arbitrary degree r ≥ 3. Moreover, in comparison to [4], the scheme
in the present paper involves orthogonal spline collocation (OSC) counterpart of
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(5), rather than the least squares solution. Also, using the OSC analog of the
Poincaré inequality, we show that the H1 norm of the error, rather than its H1

seminorm considered in [4], is of order r. Hence our OSC scheme is more accu-
rate than FD schemes of [12, 17]. The Galerkin spectral solution of [1] is obtained
using the matrix decomposition algorithm that involves the computation of eigen-
values and eigenvectors of a symmetric pentadiagonal matrix. In comparison, we
obtain our OSC solution using the matrix decomposition algorithm which involves
finding eigenvalues and eigenvectors of a generalized symmetric banded eigenvalue
problem. For r = 3, explicit formulas for eigenvalues and eigenvectors of these
eigenvalue problems are given in [4]. Our OSC solution is required to satisfy nonze-
ro Neumann boundary conditions at corners and collocation points on ∂Ω while in
[1], a function, defined on Ω and satisfying nonzero Neumann boundary conditions
on ∂Ω, is first determined. Spectral accuracy of the approximate solution in [1] is
demonstrated numerically only while we give a theoretical convergence analysis of
our OSC scheme. In [1], integrals involving f of (4) are evaluated approximately
which is unnecessary for our OSC scheme. Generalization of our OSC scheme to
(1)–(3) with (1) replaced by the separable equation

(6)
2∑

i=1

[−ai(xi)uxixi + ci(xi)u] = f(x1, x2), (x1, x2) ∈ Ω,

with variable coefficients

ai(xi) > 0, ci(xi) ≥ 0, xi ∈ [0, 1],

still involves solution of a generalized symmetric banded eigenvalue problem, while
the approach in [1] for (6), with −(aiuxi

)xi
replacing −ai(xi)uxixi

, involves solution
of a generalized symmetric eigenvalue problem with full matrices. Like scheme in [1],
our scheme generalizes to 3 dimensions, in which case the cost of solving eigenvalue
problem is negligible in comparison to the total cost of the solution process. Matrix
decomposition algorithms for solving finite element Galerkin schemes for separable
equations on a rectangle were developed in [14, 15] for Dirichlet and mixed boundary
conditions. However, [14, 15] do not provide details of such algorithms for solving
a singular linear system arising in the case of the pure Neumann problem (1)–(3).
The OSC solution of the Neumann problem on a rectangle was recently used in a
pressure Poisson OSC method for solving the Navier-Stokes equation [11].

The paper is outlined as follows. Section 2 gives some preliminary results used
in the convergence analysis. Section 3 introduces an OSC solution for (1)–(3), (5).
Error bounds are derived in Section 4. A matrix decomposition algorithm to find
the OSC solution is described in Section 5. Finally, numerical results are presented
in Section 6.

2. Preliminaries

In what follows, δx1 = {x(i)1 }Nx1
i=0 and δx2 = {x(j)2 }Nx2

j=0 are partitions of [0, 1], such
that,

0 = x
(0)
1 < x

(1)
1 < · · · < x

(Nx1 )
1 = 1, 0 = x

(0)
2 < x

(1)
2 < · · · < x

(Nx2 )
2 = 1,

and δ = δx1 × δx2 . We introduce

hx1
i = x

(i)
1 − x

(i−1)
1 , i = 1, . . . , Nx1 , hx2

j = x
(j)
2 − x

(j−1)
2 , j = 1, . . . , Nx2 ,

and we set

hx1 = max
i=1,...,Nx1

hx1
i , hx2 = max

j=1,...,Nx2

hx2
j , h = max(hx1 , hx2).


