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Abstract. We propose two families of nonconforming elements on cubical meshes: one
for the −curl∆curl problem and the other for the Brinkman problem. The element
for the −curl∆curl problem is the first nonconforming element on cubical meshes.
The element for the Brinkman problem can yield a uniformly stable finite element
method with respect to the viscosity coefficient ν. The lowest-order elements for the
−curl∆curl and the Brinkman problems have 48 and 30 DOFs on each cube, respec-
tively. The two families of elements are subspaces of H(curl;Ω) and H(div;Ω), and
they, as nonconforming approximation to H(gradcurl;Ω) and [H1(Ω)]3, can form a
discrete Stokes complex together with the serendipity finite element space and the
piecewise polynomial space.
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1 Introduction

Let Ω⊂R3 be a contractible Lipschitz polyhedral domain. For f∈H(div0;Ω), we consider
the following −curl∆curl problem:

−µcurl∆curlu+curlcurlu+γu= f in Ω,
divu=0 in Ω,
u×n=0 on ∂Ω,

curlu=0 on ∂Ω.

(1.1)
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Here γ ≥ 0 is a constant of moderate size, µ > 0 is a constant that can approach 0, n is
the unit outward normal vector on ∂Ω, and H(div0;Ω) is the space of [L2(Ω)]3 functions
with vanishing divergence, i.e.,

H(div0;Ω) :={u∈ [L2(Ω)]3 : divu=0}.

Problem (1.1) arises in applications related to electromagnetism and continuum mechan-
ics [6,27,32]. Conforming finite element approximations of this problem require the con-
struction of finite element spaces that belong to H(gradcurl;Ω), which are commonly re-
ferred to as H(gradcurl)-conforming finite element spaces. Recently, two of the authors,
along with their collaborators, developed three families of H(gradcurl)-conforming ele-
ments on both triangular and rectangular meshes [21,22,41]. The corresponding spectral
construction of the three families of rectangular elements is detailed in [36]. In three-
dimensional space, two of the authors proposed a tetrahedral H(gradcurl)-conforming
element [42] consisting of 315 DOFs per element, which was later improved by enrich-
ing the shape function space with piecewise-polynomial bubbles to reduce the DOFs to
18 [23]. See also [7,8] for a systematical construction of H(gradcurl)-conforming elements
on simplicial meshes. While the construction of H(gradcurl)-conforming elements in two
dimensions and on tetrahedral meshes is relatively complete, the development of cubi-
cal elements remains a challenge. The only cubical H(gradcurl)-conforming element in
the literature has 144 DOFs [35]. To address the issue of high DOFs in cubical elements,
nonconforming finite elements may offer a viable solution. The existing literature re-
ports two low-order nonconforming elements [24, 48] and two H(curl)-conforming but
H(gradcurl)-nonconforming elements [25, 40] on tetrahedral meshes. However, as far as
we are aware, there has been no previous research on the construction of nonconforming
cubical elements, which is one objective of this paper.

A related problem is the Brinkman model of porous flow, which seeks (u;p) such that

−div(νgradu)+αu+gradp= f in Ω,
divu= g in Ω,

u=0 on ∂Ω.
(1.2)

Here u is the velocity, p is the pressure, α > 0 is the dynamic viscosity divided by the
permeability, ν > 0 is the effective viscosity, and f ∈ [L2(Ω)]3 and g ∈ L2(Ω) are two
forcing terms. We assume α is a moderate constant, ν is a constant that can approach
0, and g satisfies the compatibility criterion

∫
Ω gdV = 0. The Brinkman problem is used

to describe the flow of viscous fluids in porous media with fractures. Applications of
this model include the petroleum industry, the automotive industry, underground wa-
ter hydrology, and heat pipes modeling. Depending on the value of effective viscosity
ν, the Brinkman problem can be locally viewed as a Darcy or Stokes problem. When
the Brinkman problem is Darcy-dominating (ν tends to 0), applying stable Stokes finite
element pairs such as the Crouzeix-Raviart element [11], the Mini element [3], and the
Taylor-Hood elements [34] will lead to non-convergent discretizations. Similarly, when
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