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LIE-POISSON NUMERICAL METHOD FOR A CLASS OF

STOCHASTIC LIE-POISSON SYSTEMS

QIANQIAN LIU AND LIJIN WANG∗

Abstract. We propose a numerical method based on the Lie-Poisson reduction for a class of

stochastic Lie-Poisson systems. Such system is transformed to SDE on the dual g∗ of the Lie
algebra related to the Lie group manifold where the system is located, which is also the reduced
form of a stochastic Hamiltonian system on the cotangent bundle of the Lie group by momentum

mapping. Stochastic Poisson integrators are obtained by discretely reducing stochastic symplectic
methods on the cotangent bundle to integrators on g∗. Stochastic generating functions creating
stochastic symplectic methods are used to construct the schemes. An application to the stochastic
rigid body system illustrates the theory and provides numerical validation of the method.
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1. Introduction

Stochastic Poisson systems (SPSs) are stochastic differential equation systems
(SDEs) of the following form ([12]):

dy(t) = B(y(t))

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

y(0) = y0,(1)

where y0 ∈ Rm, Hr : Rm → R (r = 0, . . . , s) are smooth functions, {Wr(t)}t≥0

(r = 0, . . . , s) are independent standard real valued Wiener processes defined on a
complete filtered probability space (Ω,F , {Ft}t≥0,P), ‘◦’ indicates that the SDEs
are of Stratonovich sense. B(y) = (bij(y)) is called the structure matrix of the SPS,
which is is a smooth m ×m matrix–valued function of y with the skew-symmetry
bij(y) = −bji(y), and satisfies

m∑
l=1

(
∂bij(y)

∂yl
blk(y) +

∂bjk(y)

∂yl
bli(y) +

∂bki(y)

∂yl
blj(y)

)
= 0,(2)

for all i, j, k ∈ {1, . . . ,m}. These properties of B(y) guarantee that it induces the
Poisson bracket of two smooth functions K(y) and L(y) by

{K,L}(y) = ∇K(y)TB(y)∇L(y),(3)

which satisfies the skew-symmetry, Jacobi identity and the Leibniz’ rule, as the case
for canonical Poisson bracket of Hamiltonian systems ([9]).
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In this sense, the SPSs can be considered as generalizations of stochastic Hamil-
tonian systems (SHSs) ([5, 12, 22]) :

dy(t) = J−1

(
∇H0(y(t))dt+

s∑
r=1

∇Hr(y(t)) ◦ dWr(t)

)
,

y(0) = y0,(4)

where J−1 =

(
0d −Id

Id 0d

)
and Id is the d-dimensional identity matrix. When the

dimension of a SPS is even, i.e. m = 2d, and B(y) ≡ J−1, the SPS degenerates to
a SHS. If the diffusion part vanishes, i.e. ∇Hr ≡ 0, (1) are deterministic Poisson
systems which have got attention since 19th century (see e.g. [9] and references
therein). The Poisson and Hamiltonian systems can transform to each other by
coordinate transformations or Poisson reductions ([9, 18] and references therein).
Numerical methods for SPSs can be constructed using these properties, such as
those based on the Darboux-Lie theorem ([9]) which transform symplectic methods
for SHSs to Poisson integrators for SPSs via coordinate transformations ([12]).
In this paper, however, we attempt another way, to construct Poisson integrators
via Poisson reductions for a class SPSs, generalizing the deterministic Lie-Poisson
reduction numerical approach ([4, 9, 13, 26] ) to stochastic cases.

Almost surely, the phase flow of the SPS (1) φt,ω : y → φt,ω(y) possesses the
Poisson structure, i.e. ([3, 12] )

∂φt,ω(y)

∂y
B(y)

∂φt,ω(y)

∂y

T

= B(φt,ω(y)), ∀t ≥ 0, a.s.(5)

If the rank of B(y) is not full such that there exist functions C(y) yielding

B(y)∇C(y) = 0

almost surely, then these functions are called Casimir functions ([9]) of the SPSs,
which are invariants of the systems, since almost surely

dC(y) = ∇C(y)T dy = ∇C(y)TB(y)

(
∇H0(y)dt+

s∑
r=1

∇Hr(y) ◦ dWr(t)

)
= 0.

Now we consider special structure matrices B(y) whose elements depend linearly
on y, i.e.

bij(y(t)) =

m∑
k=1

Ck
jiy

k(t), ∀i, j = 1, . . . ,m.(6)

Analog to deterministic case ([9]), SPSs (1) with B(y) fulfilling (6) are called sto-
chastic Lie-Poisson systems (SLPSs) ([3, 11, 16]). The skew-symmetry as well as
properties (2) and (6) of B(y) make it possible to define a Lie bracket calculation
using the constants Ck

ij in (6) by:

[Ei, Ej ] =
m∑

k=1

Ck
ijEk, i, j = 1, . . . ,m(7)

on a vector space with basis {Ei} (i = 1, . . . ,m). The vector space equipped with
the Lie bracket calculation constituts a Lie algebra ([9]), denoted by g.

Lie-Poisson systems arise in celestial mechanics, robotics, fluid mechanics, and
rigid body, etc. Typical examples include the Vlasov-Poisson equations, the Euler
equations for rigid bodies ([4, 9, 13, 18, 19]). Numerical methods for deterministic
Lie-Poisson systems have been developed during the last decades, including the


