Uniform RIP Bounds for Recovery of Signals with Partial Support Information by Weighted ℓ_p -Minimization

Huanmin Ge¹, Wengu Chen² and Michael K. Ng^{3,*}

 ¹ School of Sports Engineering, Beijing Sport University, Beijing 100084, China.
 ² National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
 ³ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, SAR, China.

Received 7 April 2022; Accepted 6 September 2023

Abstract. In this paper, we consider signal recovery in both noiseless and noisy cases via weighted ℓ_p (0) minimization when some partial support information on the signals is available. The uniform sufficient condition based on restricted isometry property (RIP) of order <math>tk for any given constant t > d ($d \ge 1$ is determined by the prior support information) guarantees the recovery of all k-sparse signals with partial support information. The new uniform RIP conditions extend the state-of-the-art results for weighted ℓ_p -minimization in the literature to a complete regime, which fill the gap for any given constant t > 2d on the RIP parameter, and include the existing optimal conditions for the ℓ_p -minimization and the weighted ℓ_1 -minimization as special cases.

AMS subject classifications: 94A12, 94A15, 94A08 Key words: Compressed sensing, weighted ℓ_p minimization, stable recovery, restricted isometry property.

1 Introduction

In compressed sensing, a central goal is to efficiently recover sparse signals $x \in \mathbb{R}^n$ from a relatively small number of linear measurements, i.e.

$$y = Ax + e, \tag{1.1}$$

where $y \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ ($m \ll n$) is a sensing matrix and $e \in \mathbb{R}^m$ denotes a vector of measurement errors. It has been a research focus in applied mathematics, statistics, and machine

http://www.global-sci.org/csiam-am

^{*}Corresponding author. *Email addresses:* gehuanmin@bsu.edu.cn (H. Ge), chenwg@iapcm.ac.cn (W. Chen), michael-ng@hkbu.edu.hk (M. Ng)

learning, with abundant applications ranging from medical imaging to speech recognition and video coding. A series of fast algorithms have been developed to recover the signal *x* from a relatively small number of linear measurements (1.1). The ℓ_p -minimization with 0 is among the most well-known algorithms for the reconstruction of the signal*x*

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \|\boldsymbol{x}\|_p^p \\
\text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \in \mathcal{B},$$
(1.2)

where \mathcal{B} is a set determined by the noise structure and $||\mathbf{x}||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$. For the noiseless case, $\mathcal{B} = \{\mathbf{0}\}$.

In this paper, we consider the weighted ℓ_p -minimization (0 [7–9, 11–15, 17, 18, 20] to recover the signal <math>x from (1.1), when some prior information is included in the estimates of the support of x or some estimates of largest coefficients of x. For instance, video and audio signals exhibit strong correlation over temporal frames, which can be used to estimate a portion of the support based on previously decoded frames. The main idea inherited in the weighted ℓ_p -minimization is to make the entries of x, which are expected to be large, be penalized less in the weighted objective function by introducing a weight vector $\mathbf{w} \in [0, 1]^n$. The weighted ℓ_p -minimization is formulated as follows:

$$\min_{\boldsymbol{x}\in\mathbb{R}^{n}} \|\boldsymbol{x}\|_{p,\mathbf{w}}^{p} \\
\text{s.t.} \quad \boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\in\mathcal{B},$$
(1.3)

where

$$\|\mathbf{x}\|_{p,\mathbf{w}} = \left(\sum_{i=1}^n \mathbf{w}_i |x_i|^p\right)^{\frac{1}{p}}.$$

In particular, the weighted ℓ_p -minimization (1.3) reduces to the well-known weighted ℓ_1 -minimization used for the signal recovery when p = 1, i.e.

$$\min_{\boldsymbol{x}\in\mathbb{R}^n} \|\boldsymbol{x}\|_{1,\boldsymbol{w}}
s.t. \quad \boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\in\mathcal{B}.$$
(1.4)

Let $\widetilde{T} \subseteq [n] = \{1, 2, ..., n\}$ be a known support estimate of x. The weight vector \mathbf{w} in this paper is taken by

$$\mathbf{w}_{i} = \begin{cases} \omega, & i \in \widetilde{T}, \\ 1, & i \in \widetilde{T}^{c} \end{cases}$$
(1.5)

for some fixed $\omega \in [0,1]$.

The signal recovery based on partially known support is introduced in [2, 15, 20]. In [2, 14, 16, 19, 20], the known support information is incorporated using weighted ℓ_1 -minimization with zero weights on the known support \tilde{T} , i.e. $\omega = 0$ in (1.5). Friedlander *et al.* [9] extended the weighted ℓ_1 -minimization to nonzero weights, i.e. $\omega \in [0,1]$