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A HYBRID STRESS FINITE ELEMENT METHOD FOR

INTEGRO-DIFFERENTIAL EQUATIONS MODELLING

DYNAMIC FRACTIONAL ORDER VISCOELASTICITY

MENGHAN LIU AND XIAOPING XIE∗

Abstract. We consider a semi-discrete finite element method for a dynamic model for lin-
ear viscoelastic materials based on the constitutive law of fractional order. The corresponding

integro-differential equation is of a Mittag-Leffler type convolution kernel. A 4-node hybrid stress

quadrilateral finite element is used for the spatial discretization. We show the existence and
uniqueness of the semi-discrete solution, then derive some error estimates. Finally, we provide

several numerical examples to verify the theoretical results.
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1. Introduction

Let Ω ⊂ R2 be a polygonal domain with boundary Γ, and let T be a positive
constant. We consider a hyperbolic type integro-differential system arising in the
theory of linear and fractional-order viscoelasticity:

(1)


ρutt − divσ = f(x, t), (x, t) ∈ Ω× (0, T ],

σ = σ0 −
∫ t

0
K(t− s)σ0(·, s)ds, (x, t) ∈ Ω× (0, T ],

u = 0, (x, t) ∈ Γ× (0, T ],

u(x, 0) = ϕ0(x),ut(x, 0) = ϕ1(x), x ∈ Ω.

Here ρ > 0 is the (constant) mass density, u(x, t) = (u1, u2)T the displacement
field, σ(x, t) = (σij)2×2 the symmetric stress tensor, f(x, t) the body force, and
ϕ0(x), ϕ1(x) the initial data. σ0(x, t) denotes the elastic stress tensor,

σ0 := 2µε(u) + λtr(ε(u))I,

with λ, µ > 0 being the Lamé constants, ε(u) =
1

2
(∇u + (∇u)T ) the strain tensor,

tr=̇tr(·) the trace of a matrix, and I the 2 × 2 identity. For 0 < ν < 1, 0 < α < 1,
the convolution kernel

(2) K(t) := −ν d
dt
Eα,1

(
−
(
t

τ

)α)
= ν

tα−1

τα
Eα,α

(
−
(
t

τ

)α)
,

where τ > 0 is the relaxation time, and

Eα,β(z) :=

∞∑
k=0

zk

Γ(αk + β)

denotes the two-parameter Mittag-Leffler function.
Fractional order viscoelastic models are capable of accurately describing memory

and non-locality properties of viscoelastic materials [3, 4, 5, 6, 10, 12, 13, 15, 16, 21,
34, 39]. In fact, the second equation of (1), which involves a convolution integral
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and is an explicit expression for the stress tensor in terms of the strain tensor,
originates from the fractional-order viscoelastic constitutive law

(3) σ + ταDα
t σ = (1− ν)σ0 + ταDα

t σ0,

where

Dα
t f(t) :=

1

Γ(1− α)

d

dt

∫ t

0

(t− s)−αf(s)ds.

denotes the left Riemann-Liouville operator of fractional differentiation of order α.
The explicit expression is obtained by using Laplace transform techniques on (3),
and the use of the convolution integral formulation avoids the difficulties concerning
the physical interpretation, justification and verification of fractional order initial
conditions; see [1, 11, 13, 14].

There are many works on the numerical analysis of related displacement models
of (1) where the stress tensor σ does not appear as an independent variable; see,
e.g. [2, 22, 23, 35, 37, 38]. Adolfsson et al. [2] and Saedpanah [35, 38] studied spatial
semi-discrete continuous Galerkin finite element methods and gave optimal a priori
error estimates. Larsson et al. [22] analyzed a temporal semi-discrete discontinuous
Galerkin method based on piecewise constant polynomials. In [23, 37] Larsson
and Saedpanah used the continuous space-time linear finite element method to
formulate the full discretizations, and derived optimal error estimates. We also refer
to [18, 19, 32, 33] for some literature on numerical treatment of linear viscoelasticity
problems with exponential kernels in the constitute equation.

In the numerical analysis of elasticity, the hybrid stress finite element method,
pioneered by Pian [28], is known to be an efficient approach to improve the per-
formance of the standard 4-node compatible displacement quadrilateral (bilinear)
element (cf. [28, 29, 30, 41, 42, 43, 45, 49, 50]). This method is based on the
domain-decomposed Hellinger-Reissner variational principle, which includes the dis-
placement and stress variables. Since the stress parameters can be eliminated at
the element level, only the unknowns of the displacements will remain in the re-
sulting final discrete system. In [30] Pian and Sumihara proposed a robust 4-node
hybrid stress quadrilateral element by using a rational choice of the 5-parameter
stress mode. In [43, 42, 47, 49] optimal stress modes were studied for two- and
three-dimensional hybrid stress elements. We refer to [24, 45, 50] for the stability
and convergence analysis of 4-node hybrid stress quadrilateral elements. In [44, 46]
and [40] semi-discrete and fully discrete hybrid stress methods were proposed and
analyzed for linear elastodynamic problems and Maxwell viscoelastic problems, re-
spectively.

In this paper, we apply the hybrid stress finite element method to discretize
the viscoelastic model (1) to obtain a spatial semi-discrete scheme. The standard
isoparametric bilinear interpolation is used for the displacement approximation, and
the Pian-Sumihara’s 5-parameters stress mode is used for the stress approximation.
We prove the existence and uniqueness of the semi-discrete solution, and derive
optimal error estimates.

The rest of the paper is organized as follows. Section 2 introduces notations
and weak formulations. Section 3 gives the semi-discrete hybrid stress scheme and
carries out the error analysis. Finally, Section 4 provides some numerical results.

2. Notations and weak formulations

Throughout this paper,we use Hr(Ω) to denote the standard Sobolev spaces with
norm ‖ · ‖r and semi-norm | · |r. And H0(Ω) = L2(Ω) is the space of square integral
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