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TWO DECOUPLED AND LINEARIZED BLOCK-CENTERED
FINITE DIFFERENCE METHODS FOR THE NONLINEAR
SYMMETRIC REGULARIZED LONG WAVE EQUATION

JIE XU, SHUSEN XIE, AND HONGFEI FU*

Abstract. In this paper, by introducing a new flux variable, two decoupled and linearized block-
centered finite difference methods are developed and analyzed for the nonlinear symmetric regu-
larized long wave equation, where the two-step backward difference formula and Crank-Nicolson
temporal discretization combined with linear extrapolation technique are employed. Under a rea-
sonable time stepsize ratio restriction, i.e., ∆t = o(h1/4), second-order convergence for both the
primal variable and its flux are rigorously proved on general non-uniform spatial grids. More-
over, based upon the convergence results and inverse estimate, stability of two methods are also
demonstrated. Ample numerical experiments are presented to confirm the theoretical analysis.
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1. Introduction

Decades ago, numerical simulations of the mathematical models to explain the
behavior of nonlinear wave phenomena began to become one of the important scien-
tific research fields. Many nonlinear wave systems are usually used to demonstrate
some typical physical problems, such as heat flow phenomena, wave and shallow
water wave propagation, optical fiber, hydrodynamics, plasma physics, chemical
kinematics, electricity, biology and quantum mechanics [2, 3, 7, 20, 29].

As one of the wave models, the symmetric regularized long wave (SRLW) equa-
tion can describe various nonlinear phenomena. The first research result devoted
to this model was published by Seyler and Fenstermacher [27] for describing the
propagation of ion acoustic waves, shallow water waves, and solitary waves with
bidirectional propagation:

ut − uxxt + ρx + uux = 0,(1)
ρt + ux = 0,(2)

for (x, t) ∈ Q = I × J := (a, b) × (0, T ], where ρ and u are dimensionless electron
charge density and the fluid velocity, respectively.

In this paper, we are interested to propose two decoupled and linearized finite
difference methods on general non-uniform spatial grids for (1)–(2) enclosed with
the following boundary and initial conditions

(3) ux(a, t) = ux(b, t) = ρ(a, t) = ρ(b, t) = 0, t ∈ J,

(4) u(x, 0) = uo(x), ρ(x, 0) = ρo(x), x ∈ Ī ,
where u0(x) and ρ0(x) are two given smooth functions.

Up to now, there are a great amount of work devoting to the traveling wave so-
lution and numerical simulations of the SRLW equation. Existence and uniqueness

Received by the editors on October 11, 2022 and, accepted on January 16, 2024.
2000 Mathematics Subject Classification. 65H10, 65M06, 65M12.
∗Corresponding author.

244



TWO BCFD METHODS FOR NONLINEAR SRLW EQUATION 245

of the solution, existence of global attractors, stability and instability of solitary
waves and exact traveling wave solution were studied in Refs. [5, 6, 9, 32]. How-
ever, the analytical solution of model (1)–(2) is usually not available on bounded
domain. Therefore, efficient numerical methods and numerical analysis are neces-
sary, of which the finite difference method is viewed as one of the most significant
numerical methods. In Ref. [31], Wang, Zhang and Chen proposed three nonlinear
and linear three-level second-order difference schemes on uniform spatial grids, in
which two are coupled and one is decoupled. The convergence estimates of the
approximate solutions to u and ρ were proved to be O(∆t2 + h2) in discrete L∞
and L2 norm, respectively. Li [19] studied a conservative weighted compact differ-
ence method on uniform grids as well, and proved that the convergence order is
O(∆t2 + h4) in discrete L∞ norm for u and L2 norm for ρ, respectively. Recently,
He et al. [13] constructed a fourth-order accurate compact difference scheme for
the SRLW equation, and they also analyzed the convergence and stability of the
scheme, but only for u in discrete L∞ norm with a uniform spatial grids. Besides,
In Ref. [14], He, Wang and Dai developed two dissipative difference schemes for the
generalized SRLW equations, where one is a two-level nonlinear coupled scheme and
the other is a three-level linear decoupled scheme. Convergence order O(∆t2 + h4)
on uniform spatial grids and stability in discrete L∞ norm for u and L2 norm
for ρ were proved by the discrete energy method. Dirichlet boundary conditions
are involved in all papers mentioned above. There are also some other numerical
methods for the SRLW model, see finite difference methods [4, 12, 16, 21, 24, 36],
spectral and pseudo spectral methods [10, 18, 28, 37, 38], and finite element meth-
ods [11, 22, 23, 34]. However, as far as we know, there are still no papers concerning
finite difference methods on general non-uniform meshes.

In real simulations of the nonlinear SRLW equation, the flux of the primal vari-
able usually represents the velocity variation, and sometimes it is of great impor-
tance to calculate the flux in high-order accuracy, which is also the motivation of
our concern on space discritization. It is well known that block-centered finite dif-
ference (BCFD) method can simultaneously approximate the primal variable and
its flux to a same order of accuracy on non-uniform grids without any accuracy
lost, compared to the standard finite difference method. It can be thought of as the
lowest-order Raviart-Thomas mixed element method [26] by employing a proper
numerical quadrature formula. Thus, the method is widely studied in the litera-
ture. For example, Weiser and Wheeler [30] studied the BCFD method for elliptic
problems with Neumann boundary conditions in one and two-dimensional cases.
They demonstrated that with sufficiently smooth data, the discrete L2-norm errors
for both the approximate solution and its first derivatives are in second-order for all
non-uniform grids. In Ref. [1], Arbogast, Wheeler and Yotov presented the mixed
finite elements for elliptic problems with tensor coefficients as cell-centered finite
differences. Besides, in Refs. [17, 25, 35], some BCFD methods were developed to
solve flow models such as the multiscale flows model, Darcy-Forchheimer model,
and semiconductor device model. Basically, second-order spatial convergence were
observed therein. In summary, the BCFD method could keep second-order spatial
accuracy both for the original unknown, called pressure in porous media flow, and
its derivatives, called velocity in porous media flow, on general non-uniform spatial
grids. Thus, it is widely used even for problems with boundary layers and large
gradient deformations.

As far as we know, there seems to be no published work on BCFD method for
the nonlinear SRLW equation with Neumann boundary conditions. Our main goal
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