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Abstract. Let L=−∆+V be a Schrödinger operator, where ∆ is the Laplacian
on R

d and the nonnegative potential V belongs to the reverse Hölder class Bd/2.
In this paper, we define a new version of Carleson measure associated with the
fractional heat semigroup of Schrödinger operator L. We will characterize the
Campanato spaces and the predual spaces of the Hardy spaces by the new
Carleson measure.
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1 Introduction

The Schrödinger operators with potential satisfying the reverse Hölder inequality
have been studied by various authors. Some basic results are established in Fef-
ferman [8], Zhong [18] and Shen [12]. The Hardy type spaces H

p
L, d/(d+δ)<p≤1

for some δ>0, and BMO type space BMOL associated with a Schrödinger opera-
tor L are studied by Dziubański-Zienkiewicz [5,6] and Dziubański et al. [4]. In this
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article, we investigate fractional heat semigroup related to the Schrödinger oper-
ator L, then we use it to define a new version of Carleson measure to characterize
the dual spaces and predual spaces of the Hardy space H

p
L, d/(d+δ)< p<1.

Let L=−∆+V be a Schrödinger operator on R
d, d≥3, where ∆ is the Lapla-

cian and V 6≡0 is a nonnegative potential belonging to the reverse Hölder class Bq

for some q≥d/2, i.e.,

(
1

|B|
∫

B
Vq(x)dx

)1/q

≤C

(
1

|B|
∫

B
V(x)dx

)
for every ball B. (1.1)

Without loss of generalization, we assume that V∈Bq
0

for some d/2< q0 <d and

set δ0 = 2−d/q0 and δ = min(1,δ0)≤ 1, and throughout the paper we keep this
assumption and the meanings of q0 , δ0 and δ.

Let {TL
t }t>0={e−tL}t>0 be the semigroup of linear operators generated by −L

and KL
t (x,y) be their kernels. Since V is nonnegative, the Feynman-Kac formula

implies that

0≤KL
t (x,y)≤Kt(x−y)=(4πt)−d/2e−(4t)−1|x−y|2 , (1.2)

where Kt(x) is the convolution kernels of the heat semigroup {Tt}t>0={et∆}t>0.
The estimate (1.2) can be improved as follows. We introduce the auxiliary func-
tion ρ(x,V)=ρ(x) defined by

ρ(x)=sup

{
r>0 :

1

rd−2

∫

B(x,r)
V(y)dy≤1

}
. (1.3)

It is well known that 0<ρ(x)<∞ and there exists k0≥1 such that

1

C

(
1+

|x−y|
ρ(x)

)−k0

≤ ρ(y)

ρ(x)
≤C

(
1+

|x−y|
ρ(x)

)k0/(k0+1)

. (1.4)

In particular, ρ(y)∼ρ(x) if |x−y|<Cρ(x) (cf. [12, Lemma 1.4]). Then we have the
following estimates for KL

t (x,y).

Proposition 1.1 ([7, Theorem 4.10]). For every N>0, there is a constant CN >0 such

that

KL
t (x,y)≤CN t−d/2e−(5t)−1|x−y|2

(
1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

.

Proposition 1.2 ([7, Proposition 4.11]). For every N > 0, there exist CN > 0 and 0<

δ′<δ such that, for all |h|≤
√

t,

∣∣KL
t (x+h,y)−KL

t (x,y)
∣∣≤CN

( |h|√
t

)δ′

t−d/2e−At−1|x−y|2
(

1+

√
t

ρ(x)
+

√
t

ρ(y)

)−N

.


