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Abstract. In this paper, we consider using Schur complements to design pre-
conditioners for twofold and block tridiagonal saddle point problems. One
type of the preconditioners are based on the nested (or recursive) Schur com-
plement, the other is based on an additive type Schur complement after per-
muting the original saddle point systems. We analyze different preconditioners
incorporating the exact Schur complements. We show that some of them will
lead to positively stable preconditioned systems if proper signs are selected in
front of the Schur complements. These positive-stable preconditioners outper-
form other preconditioners if the Schur complements are further approximated
inexactly. Numerical experiments for a 3-field formulation of the Biot model
are provided to verify our predictions.
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1 Introduction

Many application problems will lead to twofold and/or block tridiagonal saddle
point linear systems. Important examples include mixed formulations of the Biot
model [1, 9, 22, 26, 33], the coupling of fluid flow with porous media flow [10, 21,
29], hybrid discontinuous Galerkin approximation of Stokes problem [17], liquid
crystal problem [3,36] and optimization problems [23,26,28,34,38]. Some of these
problems (or after permutations) will lead to a twofold saddle point problem
[3, 12, 21, 23, 24, 38, 40, 41] (or the so-called double saddle point problem) of the
following form:
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A negative sign in front of A2 is just for the ease of notation. After simple permu-
tations, the system matrix of (1.1) can be rewritten into the following form:
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We call the system matrix in (1.2) permutation-equivalent to that in (1.1). With-
out causing confusion, we continue to use the notation A for the permuted ma-
trix (1.2). The linear system in (1.2) arises naturally from the domain decomposi-
tion methods [30, 39]. In this work, we only assume that A1 is invertible and the
global system matrix A is invertible. Many special cases, e.g. if A2=0, or A3=0,
or A2= A3 =0 can be cast into the above forms of twofold saddle point systems.
Our discussions will try to cover all these special cases.

The above 3-by-3 block linear problems (1.1) and (1.2) can be naturally ex-
tended to n-tuple cases. For example, when the system matrix in (1.1) is extended
to the n-tuple case, it is the block tridiagonal systems discussed in [38]. When the
system matrix in (1.2) is extended to the n-tuple case, it corresponds to the linear
system resulting from the domain decomposition method for elliptic problems
with n−1 subdomains. In many references, these linear systems are assumed to
be symmetric. No matter whether it is symmetric or not, A is generally indefinite.
For solving such a system in large-scale computations, Krylov subspace methods
with preconditioners are usually applied. The analysis in [25, 31] indicates that
one should employ Schur complement based preconditioners [5, 15, 16, 27] and


