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ANALYSIS OF A MIXED-SHEAR-PROJECTED
QUADRILATERAL ELEMENT METHOD FOR
REISSNER-MINDLIN PLATES

GUOZHU YU, XTAOPING XIE*, AND YUANHUI GUO

Abstract. This paper analyzes an existing 4-node hybrid mixed-shear-projected quadrilateral ele-
ment MiSP4, presented by Ayad, Dhatt and Batoz (Int. J. Numer. Meth. Engng 1998, 42: 1149-
1179) for Reissner-Mindlin plates, which behaves robustly in numerical benchmark tests. This
method is based on Hellinger-Reissner variational principle, where continuous piecewise isopara-
metric bilinear interpolations, as well as the mixed shear interpolation/projection technique of
MITC family, are used for the approximations of displacements, and piecewise-independent equi-
librium modes are used for the approximations of bending moments/shear stresses. Due to local
elimination of the parameters of moments/stresses, the computational cost of MiSP4 element is
almost the same as that of the conforming bilinear quadrilateral displacement element. We show
that the element is free from shear locking in the sense that the error bound in the derived a priori
estimate is independent of the plate thickness.
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1. Introduction

Due to avoidance of C'-continuity difficulty, the Reissner-Mindlin (R-M) plate
model is today the dominating two-dimensional model used to calculate the bending
of a thick/thin three-dimensional plate of thickness ¢. It’s well-known that for values
of t close to zero, the standard low-order finite element discretization of this model
suffers from shear locking ([1, 17]).

To overcome the shear locking difficulty and derive ‘locking-free’ or robust plate
bending elements that are valid for the analysis of thick and thin plates, signifi-
cant efforts are devoted to the development of simple and efficient triangular and
quadrilateral finite elements in the past few decades. The most common approach
is to modify the variational formulation with some reduction operator so as to
weaken the Kirchhoff constraint (see, e.g. [2]-[8], [10], [12], [14]-][16], [18]-[20] and
the references therein).

Among the existing elements, the family of finite elements named mixed inter-
polated tensorial components (MITC) by Bathe et. al [4, 5] is one of the most
attractive representative. By virtue of an independent shear approximation and a
discrete Mindlin technique along edges, MITC elements define the shear strains in
terms of the edge tangential strains that are projected on the element degrees of
freedom. As the lowest order quadrilateral MITC element, the 4-node plate element
MITCA4 is very likely the most used in practice.

Using the same technique of shear interpolation as in the element MITC fam-
ily, Ayad, Dhatt and Batoz [3] presented an improved formulation for obtaining
locking-free quadrilateral element, which is called MiSP4 element. It is based on
Hellinger-Reissner variational principle, including variables of displacements, shear
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stresses and bending moments. For the approximations of displacements, MiSP4
element uses continuous piecewise isoparametric bilinear interpolations. For the
approximations of bending moments/shear stresses, it uses piecewise-independent
equilibrium modes. The numerical experiments are presented to show that the
MiSP4 element can avoid locking phenomenon, and it also passes the patch test for
a general quadrilateral. However, so far there is no uniform error analysis with re-
spect to plate thickness. It should be pointed out that in a very recent paper [8], the
shear interpolation treatment was replaced by enhancing a shear-stress-enhanced
condition, and the resultant 4-node hybrid finite element scheme was shown to be
locking-free.

The main goal of this work is to establish uniform convergence for quadrilateral
MiSP4 element. The main tools of our analysis are the self-equilibrium relation,
i.e. (21), which contributes to the uniform coercivity of the corresponding bilinear
forms, and the properties of shear interpolation proved in [11] for MITC4 element
(see Lemma 4.11).

We arrange the rest of this paper as follows. In Section 2 we give weak for-
mulation of the model. Section 3 introduces the finite element spaces for MiSP4
element. We derive in Section 4 uniform error estimates for MiSP4 element. Finally
in Section 5 we provide some numerical results to verify the theoretical results.

For convenience, throughout the paper we use the notation a < b to represent
that there exists a generic positive constant C, independent of the mesh parameter
h and the plate thickness ¢, such that a < Cb. We also abbreviate a < b < a as
a=b.

2. Weak problem

The Reissner-Mindlin model for the bending of a clamped isotropic elastic plate
in equilibrium reads as: Find (w, 8) € Hg () x H}(Q)? such that
(1) —divDe(B) — Mt %(grad w — B) =0 in
(2) ~ M 2div(grad w —B) =g in Q.
Here Q C R?, assumed to be a convex polygon for simplicity, is the region occupied
by the midsection of the plate with plate thickness ¢, w and 3 denote respectively
the transverse displacement of the midplane and the rotation of the fibers normal

to it, €(B) is the symmetric part of the gradient of 3, g is the transverse loading,
D is the elastic module tensor defined by

DQ = m[(l —1)Q + vtr(Q)I]

with Q a 2 X 2 symmetric matrix, A = Q(’f—fy) with E the Young’s modulus, v the

Poisson’s ratio, and k = % the shear correction factor.

Set
M := L*(Q)2%2, T :=L*Q)? W:=Hj(Q), ©:=H)Q)>.

sym>

When introducing the shear stress vector v = A\t ~2(grad w — 3) and the bending
moment tensor M = —De(3), the model problem (1)-(2) changes into the following
system: Find (M, ~,w,3) € M x I' x W x © such that

(3) divM —~v =0 in £,
4) divy+g=0 in €,
(5) M+ De(B) =0 in Q
(6) ~y—M"%(gradw—B)=0 in Q.



