Subordination Results for p-Valent Meromorphic Functions Associated with a Linear Operator

A. O. Mostafa* and M. K. Aouf

Department of Mathematics, Faculty of Science Mansoura University, Mansoura 35516, Egypt

Received 5 June 2013; Accepted (in revised version) 5 November 2014

Abstract. In this paper, by making use of the Hadamard products, we obtain some subordination results for certain family of meromorphic functions defined by using a new linear operator.

Key Words: Meromorphic functions, subordination, Hadamard product, linear operator.

AMS Subject Classifications: 30C45

1 Introduction

Let \sum_{v} be the class of functions of the form:

$$f(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_k z^k, \quad p \in \mathbb{N} = \{1, 2, \dots\},$$
 (1.1)

which are analytic and p-valent in the punctured unit disc $U^* = U \setminus \{0\}$, where $U = \{z : z \in \mathbb{C}, |z| < 1\}$. If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$ if there exists a Schwarz function w, which (by definition) is analytic in U with w(0) = 0 and |w(z)| < 1 for all $z \in U$, such that f(z) = g(w(z)), $z \in U$. Furthermore, if the function g is univalent in U, then we have the following equivalence (cf. e.g., [6,7] and [3]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$$
 and $f(U) \subset g(U)$.

For functions f given by (1.1) and $g \in \sum_{p}$ given by

$$g(z) = z^{-p} + \sum_{k=1-p}^{\infty} b_k z^k,$$

^{*}Corresponding author. *Email addresses:* adelaeg254@yahoo.com (A. O. Mostafa), mkaouf127@yahoo.com (M. K. Aouf)

the Hadamard product (or convolution) of *f* and *g* is defined by

$$(f*g)(z) = z^{-p} + \sum_{k=1-p}^{\infty} a_k b_k z^k = (g*f)(z).$$

For complex numbers $\alpha_1, \dots, \alpha_q$ and β_1, \dots, β_s $(\beta_j \notin Z_0^- = \{0, -1, -2, \dots\}; j = 1, 2, \dots, s)$, we define the generalized hypergeometric function ${}_qF_s$ $(\alpha_1, \dots, \alpha_l; \beta_1, \dots, \beta_s; z)$ (see, for example, [9]) by the following infinite series:

$$_{q}F_{s}(\alpha_{1},\dots,\alpha_{l};\beta_{1},\dots,\beta_{s};z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}\dots(\alpha_{q})_{k}}{(\beta_{1})_{k}\dots(\beta_{s})_{k}(1)_{k}} z^{k}, \quad q \leq s+1; \ s,q \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}; \ z \in U,$$

where

$$(d)_k = \left\{ \begin{array}{ll} 1, & k=0; \quad d \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}, \\ d(d+1) \cdots (d+k-1), & k \in \mathbb{N}_0; \quad d \in \mathbb{C}. \end{array} \right.$$

Corresponding to a function $K_{p,q,s}(\alpha_1;\beta_1;z)$ defined by

$$K_{p,q,s}(\alpha_1;\beta_1;z) = z_q^{-p} F_s(\alpha_1,\dots,\alpha_q;\beta_1,\dots,\beta_s;z), \tag{1.2}$$

we define the linear operator $H^{m,\lambda}_{p,q,s}(\alpha_1)f:\sum_p \to \sum_p$ by:

$$\begin{split} &H_{p,q,s}^{0,\lambda}(\alpha_1)f(z) = f(z) * K_{p,q,s}(\alpha_1;\beta_1;z), \\ &H_{p,q,s}^{1,\lambda}(\alpha_1)f(z) = H_{p,q,s}^{\lambda}(\alpha_1)f(z) \\ &= (1-\lambda)(f(z) * K_{p,q,s}(\alpha_1;\beta_1;z)) + \frac{\lambda}{z^p} [z^{p+1}f(z) * K_{p,q,s}(\alpha_1;\beta_1;z)]', \end{split}$$

and (in general)

$$H_{p,q,s}^{m,\lambda}(\alpha_{1})f = H_{p,q,s}^{\lambda}(\alpha_{1})(H_{p,q,s}^{m-1,\lambda}(\alpha_{1})f(z))$$

$$= z^{-p} + \sum_{k=1-p}^{\infty} [1 + \lambda(k+p)]^{m} \frac{(\alpha_{1})_{k+p} \cdots (\alpha_{q})_{k+p}}{(\beta_{1})_{k+p} \cdots (\beta_{s})_{k+p}(1)_{k+p}} a_{k}z^{k}, \quad m \in \mathbb{N}_{0}; \quad \lambda > 0.$$
(1.3)

From (1.3), we can easily deduce that

$$z(H_{p,q,s}^{m,\lambda}(\alpha_1)f(z))' = \alpha_1 H_{p,q,s}^{m,\lambda}(\alpha_1+1)f(z) - (\alpha_1+p)H_{p,q,s}^{m,\lambda}(\alpha_1)f(z), \tag{1.4}$$

and

$$\lambda z (H_{p,q,s}^{m,\lambda}(\alpha_1)f(z))' = H_{p,q,s}^{m+1,\lambda}(\alpha_1)f(z) - (1+\lambda p)H_{p,q,s}^{m,\lambda}(\alpha_1)f(z), \quad \lambda > 0.$$
 (1.5)

We note that, for m = 0, the operator $H_{p,q,s}^{0,\lambda}(\alpha_1) = H_{p,q,s}(\alpha_1)$ which was investigated by Liu and Srivastava [5] and Aouf [2], for q = 2, s = 1, $\alpha_2 = 1$ and m = 0, the operator $H_{p,2,1}^{0,\lambda}(\alpha_1;\beta_1) = 1$