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Abstract. In this paper, the authors prove that the multilinear fractional integral operator

Tg 1(;\2 and the relevant maximal operator Mgl (’f 2 with rough kernel are both bounded from

LP(1 < p < eo) to L9 and from L? to L/ ("= with power weight, respectively, where

ALA R, (A1:%,Y) R, (A3 x,y)
TR0 = [ T =) )y

and

1 2
ALA
Mo (f)(x) = sup S —— ‘xﬂ_KrHRm; (Aisx,y)Qx —y) fy)|dy,

>0 7 i=1
and 0 < a < n, Q € L*(§" V(s > 1) is a homogeneous function of degree zero in R”, A;
is a function defined on R" and Ry, (A;;x,y) denotes the m; — th remainder of Taylor series

1
of A; at x about y. More precisely, Ry, (Ai:x,y) = Ai(x) — ) —'DyAi(y)(x —y)", where
Ir<m; ©°
DY(A;) € BMO(R?) for |y| = mi — 1(m; > 1), i = 1,2.
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1 Introduction

As two of the most important operators in harmonic analysis, the fractional integral operator

To, o and the corresponding maximal operator Mg o are defined by

Toof(x) ::/ Qx—y)

R [x—y[r

JO)dy, (1.1)
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Moo/ =swp [ |Q=y) 70y (12)
h>0 x—y|<h

where 0 < a <n, 1/g=1/p—oa/nand Q € L*(S"" V(s > n/(n— a)) is homogeneous of degree
zero in R”. In 1993 and 1998, Chanillo !l and Ding [l proved that Tg ¢ and Mg ¢ are bounded
from LP(1 < p < o) to L respectively. In 1997, Ding 1 gave that if —1 < B <0 and f €
L' (Jx|P(n=@)/m) then Tq ¢ and Mg ¢ are both bounded from L' (|x|P(=%)/n) to /(=)=

It is well known that the study of multilinear fractional integral operators are received in-
creasing attentions. Let Y= (v1,%, -+, %), and %;(i = 1,2, - -+ ,n) be nonnegtive integers. Denote
VS ifln, V=n!pl bl xl =x]'xp - xlf

ol

D" = .
aylxlaVZxZ .. .aYnxn

Suppose that A is a function defined on R”. Denote by R,,(A;x,y) the m-th order remainder of
1
the Taylor series of A at x about y, that is, R,,(A:x,y) = A(x) — —'D"A(y)(x—y)’, m > 1.

[Yl<m
Then the multilinear fractional integral operator Té_y o 18 defined by
Qx —y)Rm(A:x,y)

Taf ()= [ S ) (13)

and the relevant maximal operator Mé, o 18 given by

1

M, of (x) := sup Y / |Q(x — y)Rin(Asx,) f(v)|dy. (1.4)

>0 [x—y|<r

In 2001, DingP! proved that if DYA € L'(R")(1 < r < oo,|y| = m — 1), then T4 o M?La are
both weighted bounded operators from L”(w?) to L4(w?) with the weight w € A( p; g) and from
LP(1 < p < n/a) to L'/ ("=®)= with the power weight. Obviously, when m = 1, T4  reduces to
the commutator generated by the fractional integral Tq o and the function A. In 2002, Yang and
Wu ) proved that if DYA € BMO(R”"), then Té_’a and MSA),a are bounded from L”(1 < p < o)

to L4. In 2003, Lu and Zhang® proved that if DYA € Ag, s> ——— 0<B <1,1/q=
g p Ry Yy B /q

1/p—(ot+B)/n, then T4 , and M4 , are bounded from LP(1 < p < ) to L9 and from L!

o+p
to L"/"=%=B=_1n 2001, Lu and Ding/* showed that if DYA; € BMO(R"), than the operator
ApAs, - Ap Q(x—y) k
TQ,]oc 2 Ak £ (x) 1= /R" 7’)6_)}’”_““\/ I—[lij(Aj;x,y)f(y)dy (1.5)
J:

k
with N = Y (m; — 1)(m; > 2) and the relevant maximal operator
=1

Ay 1 k
M?;,;fz’ A f(x) = Supm/x_y<r\Q(X—Y)I—[lRm,(Aj;X,Y)f(y)\dy (1.6)
]:

0T



