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A PRIORI ERROR ESTIMATES OF A SIGNORINI CONTACT

PROBLEM FOR ELECTRO-ELASTIC MATERIALS

SALAH BOURICHI1, EL-HASSAN ESSOUFI1 AND RACHID FAKHAR2

Abstract. We consider a mathematical model for a static process of frictionless unilateral contact
between a piezoelectric body and a conductive foundation. A variational formulation of the model,
in the form of a coupled system for the displacements and the electric potential, is derived. The
existence of a unique weak solution for the problem is established. We use the penalty method
applied to the frictionless unilateral contact model to replace the Signorini contact condition, we
show the existence of a unique solution, and derive error estimates. Moreover, under appropriate
regularity assumptions of the solution, we have the convergence of the continuous penalty solution
as the penalty parameter ǫ vanishes. Then, the numerical approximation of a penalty problem by
using the finite element method is introduced. The error estimates are derived and convergence
of the scheme is deduced under suitable regularity conditions.
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1. Introduction

In recent years, piezoelectric materials have triggered intensive studies to fulfill
their potential applications in a variety of fields due to include the coupling between
the mechanical and electrical material properties. Indeed, there is a considerable
interest in frictional or frictionless contact problems involving piezoelectric mate-
rials, see, e.g., [1, 2, 4, 7, 8, 9, 11] and the references therein. Here, we consider a
mathematical model which describes the frictionless contact between an piezoelec-
tric body and a foundation, within the framework of small deformations theory.
The material’s behavior is modeled with a linear electroelastic constitutive law,
the process is static and the foundation is assumed to be electrically conductive.
Contact is described with the Signorini contact conditions and a regularized elec-
trical conductivity condition. The numerical approximation of a static unilateral
contact problems with or without friction for piezoelectric materials can be found
in [1, 2, 5, 7].

In the present work, the numerical approximations were based on variational
inequalities modeling unilateral contact in piezoelectricity. Here, a penalty method
is employed to replace the Signorini contact condition. This approach was used
previously by F. Chouly and P. Hild [3] to numerically approximate the solution of
contact problems in linear elasticity. The novelty of the paper is in dealing with
a model which couples the piezoelectric properties of the material with the electri-
cal conductivity conditions on the contact surface. Consideration of the electrical
contact condition leads to nonstandard boundary conditions on the contact sur-
face and supplementary nonlinearities in the problem. Because of the latter and
piezoelectric effect, the mathematical problem is formulated as a coupled system
of the variational inequality for the displacement field and non-linear variational
equation for the electric potential. In this paper, We analyze both the continuous
and discrete (using continuous conforming piecewise linear finite element methods)
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problems. We show that the theoretical convergence of the penalty method gives
the best results when ǫ = h, where ǫ is the penalty parameter, and h is the mesh
size. We note that the convergence is limited by the same terms involved when
considering the direct approximation of the variational inequality without penalty.

The paper is organized as follows. In Section 2 we present the models of elec-
troelastic frictionless unilateral contact with the electrical contact condition. list
the assumptions on the data, derive the variational formulation of each model, and
state the existence and uniqueness result. In Section 3 we introduce the penalty
problem and show that it has a unique solution. In Section 4, we describe the finite
element approximation of the penalty problem and we present the results of some
error estimates for the numerical approximation. finally, The proof of the main
result is provided in Section 5.

2. Setting of the problem and variational formulation

2.1. The contact problem. In this section we describe the problem of unilateral
frictionless contact between a piezoelectric body and a conductive foundation.
The physical setting is the following : we consider an elasto-piezoelectric body which
initially occupies an open bounded domain Ω ⊂ Rd, d = 2, 3 with a sufficiently
smooth boundary ∂Ω = Γ. The body is acted upon by a volume forces of density
f0 and has volume electric charges of density q0. It is also constrained mechanically
and electrically on the boundary. To describe these constraints we decompose Γ
into three mutually disjoint open parts ΓD, ΓN and ΓC , on the one hand, and a
partition of ΓD ∪ ΓN into two open parts Γa and Γb, on the other hand, such that
meas(ΓD) > 0 and meas(Γa) > 0. The body is clamped on ΓD and a surface
tractions of density f2 act on ΓN . Moreover, the electric potential vanishes on Γa
and the surface electric charge of density q2 is prescribed on Γb. On ΓC the body
may come into contact with a conductive obstacle, the so called foundation. We
assume that the foundation is electrically conductive and its potential is maintained
at ϕF . The contact is frictionless unilateral and there may be electrical charges on
the contact surface. The indices i, j, k, l run between 1 and d. The summation
convention over repeated indices is adopted and the index that follows a comma
indicates a partial derivative with respect to the corresponding component of the
spatial variable, e.g., ui,j = ∂ui/∂xj. Everywhere below we use Sd to denote the
space of second order symmetric tensors on Rd while “ ·” and ‖ ·‖ will represent the
inner product and the Euclidean norm on Rd and Sd, that is ∀u, v ∈ Rd, ∀σ, τ ∈ Sd,

u · v = ui · vi, ‖v‖ = (v · v)
1
2 , and σ · τ = σij · τij , ‖τ‖ = (τ · τ)

1
2 .

We denote by u : Ω → Rd the displacement field, by σ : Ω → Sd, σ = (σij) the
stress tensor and by D : Ω → Rd, D = (Di) the electric displacement field. We
also denote E(ϕ) = (Ei(ϕ)) the electric vector field, where ϕ : Ω → R is an electric
potential such that E(ϕ) = −∇ϕ. We shall adopt the usual notations for normal
and tangential components of displacement vector and stress : vn = v · n, vτ =
v − vnn, σn = (σn) · n, στ = σn − σnn , where n denote the outward normal
vector on Γ. Moreover, let ε(u) = (εij(u)) denote the linearized strain tensor given
by εij(u) = 1

2 (ui,j + uj,i), and “Div ”, “ div ” denote respectively the divergence
operators for tensor and vector valued functions, i.e. Div σ = (σij,j), divD =
(Dj,j).

Under the previous assumption, the classical model for this process is the fol-
lowing.
Problem P . Find a displacement field u : Ω → Rd, a stress field σ : Ω → Sd, an


