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Abstract. We establish several fundamental identities, including recurrence relations,
degree elevation formulas, partition of unity and Marsden identity, for quantum Bern-
stein bases and quantum Bézier curves. We also develop two term recurrence relations
for quantum Bernstein bases and recursive evaluation algorithms for quantum Bézier
curves. Our proofs use standard mathematical induction and other elementary tech-
niques.
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1 Introduction and definitions

Bernstein bases are polynomial bases used as blending functions for the construction of
Bézier curves and surfaces. These bases have been used extensively over the last half
century in geometric modeling, computer aided geometric design (CAGD), and approx-
imation theory. The main application of Bézier curves and surfaces is in mathematical
modeling of curves and surfaces that are used in various real life problems. One essential
property of a Bézier curve or a Bézier surface is that it can be computed very efficiently
using affine recursive evaluation algorithms. This is due to certain structural properties
of the Bernstein basis functions that other polynomial bases do not possess.

The classical Bernstein polynomials were introduced by Bernstein in 1912 and have
found many applications in applied and computational mathematics since then. The clas-
sical Bézier curves and surfaces were introduced in 1962 by the French engineer Pierre
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Bézier who worked for the French car manufacturer Renault. He used Bézier curves and
surfaces to design and model aerodynamic car bodies [1]. The q-Bernstein polynomi-
als were introduced and studied only recently by G. Phillips and his collaborators [7].
The theory of quantum q- and h-Bézier curves in the context of the quantum q- and h-
blossoming was developed very recently by Goldman, Simeonov, and Zafiris [4, 9, 10].

In this paper, our main goal is to state and prove several of the most important
properties of the (q,h)-Bernstein polynomials and (q,h)-Bézier curves such as recurrence
relations, degree elevation algorithms, the partition of unity property, linear indepen-
dence (polynomial basis), recursive evaluation algorithms, and a (q,h)-Marsden identity.
This work extends and generalizes some analogous results of Goldman, Simeonov, and
Zafiris [2, 4, 9, 10] for q- and h-Bernstein polynomials and q- and h-Bézier curves. Most
of our proofs will use the method of mathematical induction (with respect to the poly-
nomial degree), instead of the blossoming techniques used by Goldman, Simeonov, and
Zafiris [2,4,9,10], since we lack the machinery of the (q,h)-blossoming theory. The advan-
tage of our approach is that we can establish all these important properties almost from
scratch using only the very popular and well-understood induction argument, instead of
the much less familiar theory of quantum blossoming.

We begin with some notation and terminology. Let g(t)= qt+h be a linear function,
q 6=0,−1. The j-th composition of the function g is defined by

g[j](t)=(g◦g◦··· ◦g
︸ ︷︷ ︸

j times

)(t), j≥1.

We set g[0](t)= t. For example

g[2](t)=(g◦g)(t)= g(g(t))=q2 t+qh+h,

g[3](t)= g(g[2](t))=q·g[2](t)+h=q3t+(q2+q+1)h.

Notice that

q+1=
1−q2

1−q
=[2]q and q2+q+1=

1−q3

1−q
=[3]q,

where [n]q =
1−qn

1−q if q 6=1, [n]q =n if q=1 and [n]0 =1 are the so-called q-integers [6]. By

induction it is easy to show that

g[n](t)=qn ·t+

(
1−qn

1−q

)

h=qnt+[n]qh. (1.1)

The (q,h)-Bernstein polynomials of degree n on the interval [a,b] are defined by [3]

Bn
k (t;[a,b];q,h)=

[
n

k

]

q

∏
k−1
j=0 (t−g[j](a))·∏n−k−1

j=0 (b−g[j](t))

∏
n−1
j=0 (b−g[j](a))

, (1.2)


